LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid

The smart grid facilitates data centers in collecting real-time power consumption data from users, which is essential for effective power management. Such real-time data may inadvertently disclose the identities and activities of power users. Data aggregation has been identified as a viable solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-12, p.1-1
Hauptverfasser: Tan, Zuowen, Cao, Faxin, Liu, Xingzhi, Jiao, Jintao, You, Wenlei, Lin, Judou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on smart grid
container_volume
creator Tan, Zuowen
Cao, Faxin
Liu, Xingzhi
Jiao, Jintao
You, Wenlei
Lin, Judou
description The smart grid facilitates data centers in collecting real-time power consumption data from users, which is essential for effective power management. Such real-time data may inadvertently disclose the identities and activities of power users. Data aggregation has been identified as a viable solution to this challenge, enabling data centers to obtain only the aggregate power consumption data without accessing individual user information. However, most existing aggregation methodologies are limited to multi-dimensional data aggregation and fail to ensure user privacy, data integrity, and authentication. In this study, we propose a ring signature based multi-dimensional and multi-subset aggregation (LPPMM-DA) scheme. This proposed method allows the data center to compute both the total power consumption and the number of users within each subset across various dimensions. Based on the hardness assumption of the Elliptic Curve Discrete Logarithm Problem (ECDLP), the ring signature utilized in our scheme is demonstrably unforgeable against adaptive chosen message attacks within the random oracle model. A comprehensive analysis indicates that the proposed scheme meets the security requirements for data aggregation in the smart grid context. Furthermore, performance evaluations reveal that the implementation of this scheme results in lower computational and communication overhead compared to existing related approaches.
doi_str_mv 10.1109/TSG.2024.3509675
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2024_3509675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10776781</ieee_id><sourcerecordid>10_1109_TSG_2024_3509675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621-3b9be98aef84a047d9dce077520bbccb44b7e0b8bb0e41449e752f54144f218f3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEtPYnQOHvEBG0qRNw63aYCB1otJ2r5LWKYGuQ0k3tLen1SaED_Yv279lfQjdMzpnjKrH7WY1j2gk5jymKpHxFZowJRThNGHXfzrmt2gWwicdgnOeRGqCvvKiWK_JMnvCuWs--h8YMy68O-rqRAoPAfzRdQ1eH9rekaXbQRfcvtMt1l196W4OJkCPl7rXOGsaD43uhx1s9x5vdtr3eOVdfYdurG4DzC51irYvz9vFK8nfV2-LLCdVEjHCjTKgUg02FZoKWau6AiplHFFjqsoIYSRQkxpDQTAhFAwjG4_SRiy1fIro-Wzl9yF4sOW3d8MTp5LRcsRVDrjKEVd5wTVYHs4WBwD_1qVMZMr4L4BdZto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Zuowen ; Cao, Faxin ; Liu, Xingzhi ; Jiao, Jintao ; You, Wenlei ; Lin, Judou</creator><creatorcontrib>Tan, Zuowen ; Cao, Faxin ; Liu, Xingzhi ; Jiao, Jintao ; You, Wenlei ; Lin, Judou</creatorcontrib><description>The smart grid facilitates data centers in collecting real-time power consumption data from users, which is essential for effective power management. Such real-time data may inadvertently disclose the identities and activities of power users. Data aggregation has been identified as a viable solution to this challenge, enabling data centers to obtain only the aggregate power consumption data without accessing individual user information. However, most existing aggregation methodologies are limited to multi-dimensional data aggregation and fail to ensure user privacy, data integrity, and authentication. In this study, we propose a ring signature based multi-dimensional and multi-subset aggregation (LPPMM-DA) scheme. This proposed method allows the data center to compute both the total power consumption and the number of users within each subset across various dimensions. Based on the hardness assumption of the Elliptic Curve Discrete Logarithm Problem (ECDLP), the ring signature utilized in our scheme is demonstrably unforgeable against adaptive chosen message attacks within the random oracle model. A comprehensive analysis indicates that the proposed scheme meets the security requirements for data aggregation in the smart grid context. Furthermore, performance evaluations reveal that the implementation of this scheme results in lower computational and communication overhead compared to existing related approaches.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2024.3509675</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; Cryptography ; Data aggregation ; Data centers ; Data privacy ; Electricity ; Homomorphic encryption ; multi-dimensional and multi-subset data ; Power demand ; privacy-preserving ; Protection ; smart grid ; Smart grids</subject><ispartof>IEEE transactions on smart grid, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0199-4812 ; 0000-0003-1295-8526 ; 0009-0001-5327-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10776781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10776781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Zuowen</creatorcontrib><creatorcontrib>Cao, Faxin</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Jiao, Jintao</creatorcontrib><creatorcontrib>You, Wenlei</creatorcontrib><creatorcontrib>Lin, Judou</creatorcontrib><title>LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The smart grid facilitates data centers in collecting real-time power consumption data from users, which is essential for effective power management. Such real-time data may inadvertently disclose the identities and activities of power users. Data aggregation has been identified as a viable solution to this challenge, enabling data centers to obtain only the aggregate power consumption data without accessing individual user information. However, most existing aggregation methodologies are limited to multi-dimensional data aggregation and fail to ensure user privacy, data integrity, and authentication. In this study, we propose a ring signature based multi-dimensional and multi-subset aggregation (LPPMM-DA) scheme. This proposed method allows the data center to compute both the total power consumption and the number of users within each subset across various dimensions. Based on the hardness assumption of the Elliptic Curve Discrete Logarithm Problem (ECDLP), the ring signature utilized in our scheme is demonstrably unforgeable against adaptive chosen message attacks within the random oracle model. A comprehensive analysis indicates that the proposed scheme meets the security requirements for data aggregation in the smart grid context. Furthermore, performance evaluations reveal that the implementation of this scheme results in lower computational and communication overhead compared to existing related approaches.</description><subject>Authentication</subject><subject>Cryptography</subject><subject>Data aggregation</subject><subject>Data centers</subject><subject>Data privacy</subject><subject>Electricity</subject><subject>Homomorphic encryption</subject><subject>multi-dimensional and multi-subset data</subject><subject>Power demand</subject><subject>privacy-preserving</subject><subject>Protection</subject><subject>smart grid</subject><subject>Smart grids</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEtPYnQOHvEBG0qRNw63aYCB1otJ2r5LWKYGuQ0k3tLen1SaED_Yv279lfQjdMzpnjKrH7WY1j2gk5jymKpHxFZowJRThNGHXfzrmt2gWwicdgnOeRGqCvvKiWK_JMnvCuWs--h8YMy68O-rqRAoPAfzRdQ1eH9rekaXbQRfcvtMt1l196W4OJkCPl7rXOGsaD43uhx1s9x5vdtr3eOVdfYdurG4DzC51irYvz9vFK8nfV2-LLCdVEjHCjTKgUg02FZoKWau6AiplHFFjqsoIYSRQkxpDQTAhFAwjG4_SRiy1fIro-Wzl9yF4sOW3d8MTp5LRcsRVDrjKEVd5wTVYHs4WBwD_1qVMZMr4L4BdZto</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Tan, Zuowen</creator><creator>Cao, Faxin</creator><creator>Liu, Xingzhi</creator><creator>Jiao, Jintao</creator><creator>You, Wenlei</creator><creator>Lin, Judou</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0199-4812</orcidid><orcidid>https://orcid.org/0000-0003-1295-8526</orcidid><orcidid>https://orcid.org/0009-0001-5327-430X</orcidid></search><sort><creationdate>20241203</creationdate><title>LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid</title><author>Tan, Zuowen ; Cao, Faxin ; Liu, Xingzhi ; Jiao, Jintao ; You, Wenlei ; Lin, Judou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621-3b9be98aef84a047d9dce077520bbccb44b7e0b8bb0e41449e752f54144f218f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Authentication</topic><topic>Cryptography</topic><topic>Data aggregation</topic><topic>Data centers</topic><topic>Data privacy</topic><topic>Electricity</topic><topic>Homomorphic encryption</topic><topic>multi-dimensional and multi-subset data</topic><topic>Power demand</topic><topic>privacy-preserving</topic><topic>Protection</topic><topic>smart grid</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zuowen</creatorcontrib><creatorcontrib>Cao, Faxin</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Jiao, Jintao</creatorcontrib><creatorcontrib>You, Wenlei</creatorcontrib><creatorcontrib>Lin, Judou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Zuowen</au><au>Cao, Faxin</au><au>Liu, Xingzhi</au><au>Jiao, Jintao</au><au>You, Wenlei</au><au>Lin, Judou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-12-03</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The smart grid facilitates data centers in collecting real-time power consumption data from users, which is essential for effective power management. Such real-time data may inadvertently disclose the identities and activities of power users. Data aggregation has been identified as a viable solution to this challenge, enabling data centers to obtain only the aggregate power consumption data without accessing individual user information. However, most existing aggregation methodologies are limited to multi-dimensional data aggregation and fail to ensure user privacy, data integrity, and authentication. In this study, we propose a ring signature based multi-dimensional and multi-subset aggregation (LPPMM-DA) scheme. This proposed method allows the data center to compute both the total power consumption and the number of users within each subset across various dimensions. Based on the hardness assumption of the Elliptic Curve Discrete Logarithm Problem (ECDLP), the ring signature utilized in our scheme is demonstrably unforgeable against adaptive chosen message attacks within the random oracle model. A comprehensive analysis indicates that the proposed scheme meets the security requirements for data aggregation in the smart grid context. Furthermore, performance evaluations reveal that the implementation of this scheme results in lower computational and communication overhead compared to existing related approaches.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2024.3509675</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0199-4812</orcidid><orcidid>https://orcid.org/0000-0003-1295-8526</orcidid><orcidid>https://orcid.org/0009-0001-5327-430X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-12, p.1-1
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2024_3509675
source IEEE Electronic Library (IEL)
subjects Authentication
Cryptography
Data aggregation
Data centers
Data privacy
Electricity
Homomorphic encryption
multi-dimensional and multi-subset data
Power demand
privacy-preserving
Protection
smart grid
Smart grids
title LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPPMM-DA:%20Lightweight%20Privacy-Preserving%20Multi-Dimensional%20and%20Multi-Subset%20Data%20Aggregation%20for%20Smart%20Grid&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Tan,%20Zuowen&rft.date=2024-12-03&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2024.3509675&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2024_3509675%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10776781&rfr_iscdi=true