Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems
A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modifie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2023-11, Vol.14 (6), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on smart grid |
container_volume | 14 |
creator | Rajasekaran, James Ranjith Kumar Natarajan, Balasubramaniam Pahwa, Anil |
description | A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system. |
doi_str_mv | 10.1109/TSG.2023.3266834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2023_3266834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10102316</ieee_id><sourcerecordid>2879381782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EElXpzsBgiTnFryTOWLVQkFp1aJktx7GFS5oE26H03-M-hLjLfX3nXukAcI_RGGNUPG3W8zFBhI4pyTJO2RUY4IIVCUUZvv6rU3oLRt5vUQxKaUaKAdgv28oaqyu4lMHZHzhtd12tg22bpJQ-zmc6aHXsYWvgOmhZh48DnMkgo6SxXV_L03YSglSfHtoGLto9XJVeu29Z1hrOrI-ny_6ErQ8-6J2_AzdG1l6PLnkI3l-eN9PXZLGav00ni0QRloaEklQrlWGDUy5NpZkyOUlZpQzKCZEsx5whXplM0QoTTnkuGTZIGiZRzitMh-DxfLdz7VevfRDbtndNfCkIzwvKcc5JpNCZUq713mkjOmd30h0ERuLosIgOi6PD4uJwlDycJVZr_Q_HEcIZ_QUwJ3ho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879381782</pqid></control><display><type>article</type><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</creator><creatorcontrib>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</creatorcontrib><description>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3266834</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bad Data detection ; Chi-square test ; Corresponding states ; Covariance matrices ; Distribution networks ; Distribution system ; Error analysis ; Estimates ; Flexible AC power transmission systems ; Matrix completion ; Measurement uncertainty ; Moving Target Defence ; Moving targets ; Noise measurement ; Perturbation methods ; State estimation ; Training</subject><ispartof>IEEE transactions on smart grid, 2023-11, Vol.14 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</cites><orcidid>0000-0002-7570-5828 ; 0000-0001-6429-9003 ; 0000-0002-2106-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10102316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10102316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajasekaran, James Ranjith Kumar</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</description><subject>Bad Data detection</subject><subject>Chi-square test</subject><subject>Corresponding states</subject><subject>Covariance matrices</subject><subject>Distribution networks</subject><subject>Distribution system</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Flexible AC power transmission systems</subject><subject>Matrix completion</subject><subject>Measurement uncertainty</subject><subject>Moving Target Defence</subject><subject>Moving targets</subject><subject>Noise measurement</subject><subject>Perturbation methods</subject><subject>State estimation</subject><subject>Training</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EElXpzsBgiTnFryTOWLVQkFp1aJktx7GFS5oE26H03-M-hLjLfX3nXukAcI_RGGNUPG3W8zFBhI4pyTJO2RUY4IIVCUUZvv6rU3oLRt5vUQxKaUaKAdgv28oaqyu4lMHZHzhtd12tg22bpJQ-zmc6aHXsYWvgOmhZh48DnMkgo6SxXV_L03YSglSfHtoGLto9XJVeu29Z1hrOrI-ny_6ErQ8-6J2_AzdG1l6PLnkI3l-eN9PXZLGav00ni0QRloaEklQrlWGDUy5NpZkyOUlZpQzKCZEsx5whXplM0QoTTnkuGTZIGiZRzitMh-DxfLdz7VevfRDbtndNfCkIzwvKcc5JpNCZUq713mkjOmd30h0ERuLosIgOi6PD4uJwlDycJVZr_Q_HEcIZ_QUwJ3ho</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Rajasekaran, James Ranjith Kumar</creator><creator>Natarajan, Balasubramaniam</creator><creator>Pahwa, Anil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7570-5828</orcidid><orcidid>https://orcid.org/0000-0001-6429-9003</orcidid><orcidid>https://orcid.org/0000-0002-2106-0825</orcidid></search><sort><creationdate>20231101</creationdate><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><author>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bad Data detection</topic><topic>Chi-square test</topic><topic>Corresponding states</topic><topic>Covariance matrices</topic><topic>Distribution networks</topic><topic>Distribution system</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Flexible AC power transmission systems</topic><topic>Matrix completion</topic><topic>Measurement uncertainty</topic><topic>Moving Target Defence</topic><topic>Moving targets</topic><topic>Noise measurement</topic><topic>Perturbation methods</topic><topic>State estimation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajasekaran, James Ranjith Kumar</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajasekaran, James Ranjith Kumar</au><au>Natarajan, Balasubramaniam</au><au>Pahwa, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>14</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3266834</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7570-5828</orcidid><orcidid>https://orcid.org/0000-0001-6429-9003</orcidid><orcidid>https://orcid.org/0000-0002-2106-0825</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2023-11, Vol.14 (6), p.1-1 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSG_2023_3266834 |
source | IEEE Electronic Library (IEL) |
subjects | Bad Data detection Chi-square test Corresponding states Covariance matrices Distribution networks Distribution system Error analysis Estimates Flexible AC power transmission systems Matrix completion Measurement uncertainty Moving Target Defence Moving targets Noise measurement Perturbation methods State estimation Training |
title | Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Matrix%20Completion-based%20Detection%20of%20Stealthy%20Data%20Manipulation%20Attacks%20in%20Low%20Observable%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Rajasekaran,%20James%20Ranjith%20Kumar&rft.date=2023-11-01&rft.volume=14&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3266834&rft_dat=%3Cproquest_RIE%3E2879381782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879381782&rft_id=info:pmid/&rft_ieee_id=10102316&rfr_iscdi=true |