Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems

A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2023-11, Vol.14 (6), p.1-1
Hauptverfasser: Rajasekaran, James Ranjith Kumar, Natarajan, Balasubramaniam, Pahwa, Anil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE transactions on smart grid
container_volume 14
creator Rajasekaran, James Ranjith Kumar
Natarajan, Balasubramaniam
Pahwa, Anil
description A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.
doi_str_mv 10.1109/TSG.2023.3266834
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2023_3266834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10102316</ieee_id><sourcerecordid>2879381782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EElXpzsBgiTnFryTOWLVQkFp1aJktx7GFS5oE26H03-M-hLjLfX3nXukAcI_RGGNUPG3W8zFBhI4pyTJO2RUY4IIVCUUZvv6rU3oLRt5vUQxKaUaKAdgv28oaqyu4lMHZHzhtd12tg22bpJQ-zmc6aHXsYWvgOmhZh48DnMkgo6SxXV_L03YSglSfHtoGLto9XJVeu29Z1hrOrI-ny_6ErQ8-6J2_AzdG1l6PLnkI3l-eN9PXZLGav00ni0QRloaEklQrlWGDUy5NpZkyOUlZpQzKCZEsx5whXplM0QoTTnkuGTZIGiZRzitMh-DxfLdz7VevfRDbtndNfCkIzwvKcc5JpNCZUq713mkjOmd30h0ERuLosIgOi6PD4uJwlDycJVZr_Q_HEcIZ_QUwJ3ho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879381782</pqid></control><display><type>article</type><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</creator><creatorcontrib>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</creatorcontrib><description>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3266834</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bad Data detection ; Chi-square test ; Corresponding states ; Covariance matrices ; Distribution networks ; Distribution system ; Error analysis ; Estimates ; Flexible AC power transmission systems ; Matrix completion ; Measurement uncertainty ; Moving Target Defence ; Moving targets ; Noise measurement ; Perturbation methods ; State estimation ; Training</subject><ispartof>IEEE transactions on smart grid, 2023-11, Vol.14 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</cites><orcidid>0000-0002-7570-5828 ; 0000-0001-6429-9003 ; 0000-0002-2106-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10102316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10102316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajasekaran, James Ranjith Kumar</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</description><subject>Bad Data detection</subject><subject>Chi-square test</subject><subject>Corresponding states</subject><subject>Covariance matrices</subject><subject>Distribution networks</subject><subject>Distribution system</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Flexible AC power transmission systems</subject><subject>Matrix completion</subject><subject>Measurement uncertainty</subject><subject>Moving Target Defence</subject><subject>Moving targets</subject><subject>Noise measurement</subject><subject>Perturbation methods</subject><subject>State estimation</subject><subject>Training</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EElXpzsBgiTnFryTOWLVQkFp1aJktx7GFS5oE26H03-M-hLjLfX3nXukAcI_RGGNUPG3W8zFBhI4pyTJO2RUY4IIVCUUZvv6rU3oLRt5vUQxKaUaKAdgv28oaqyu4lMHZHzhtd12tg22bpJQ-zmc6aHXsYWvgOmhZh48DnMkgo6SxXV_L03YSglSfHtoGLto9XJVeu29Z1hrOrI-ny_6ErQ8-6J2_AzdG1l6PLnkI3l-eN9PXZLGav00ni0QRloaEklQrlWGDUy5NpZkyOUlZpQzKCZEsx5whXplM0QoTTnkuGTZIGiZRzitMh-DxfLdz7VevfRDbtndNfCkIzwvKcc5JpNCZUq713mkjOmd30h0ERuLosIgOi6PD4uJwlDycJVZr_Q_HEcIZ_QUwJ3ho</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Rajasekaran, James Ranjith Kumar</creator><creator>Natarajan, Balasubramaniam</creator><creator>Pahwa, Anil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7570-5828</orcidid><orcidid>https://orcid.org/0000-0001-6429-9003</orcidid><orcidid>https://orcid.org/0000-0002-2106-0825</orcidid></search><sort><creationdate>20231101</creationdate><title>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</title><author>Rajasekaran, James Ranjith Kumar ; Natarajan, Balasubramaniam ; Pahwa, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-325ecc61f158afde4cf7254dcf0722a4718408df6c3d128387a41f0af4a078d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bad Data detection</topic><topic>Chi-square test</topic><topic>Corresponding states</topic><topic>Covariance matrices</topic><topic>Distribution networks</topic><topic>Distribution system</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Flexible AC power transmission systems</topic><topic>Matrix completion</topic><topic>Measurement uncertainty</topic><topic>Moving Target Defence</topic><topic>Moving targets</topic><topic>Noise measurement</topic><topic>Perturbation methods</topic><topic>State estimation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajasekaran, James Ranjith Kumar</creatorcontrib><creatorcontrib>Natarajan, Balasubramaniam</creatorcontrib><creatorcontrib>Pahwa, Anil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajasekaran, James Ranjith Kumar</au><au>Natarajan, Balasubramaniam</au><au>Pahwa, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>14</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3266834</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7570-5828</orcidid><orcidid>https://orcid.org/0000-0001-6429-9003</orcidid><orcidid>https://orcid.org/0000-0002-2106-0825</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2023-11, Vol.14 (6), p.1-1
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2023_3266834
source IEEE Electronic Library (IEL)
subjects Bad Data detection
Chi-square test
Corresponding states
Covariance matrices
Distribution networks
Distribution system
Error analysis
Estimates
Flexible AC power transmission systems
Matrix completion
Measurement uncertainty
Moving Target Defence
Moving targets
Noise measurement
Perturbation methods
State estimation
Training
title Modified Matrix Completion-based Detection of Stealthy Data Manipulation Attacks in Low Observable Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Matrix%20Completion-based%20Detection%20of%20Stealthy%20Data%20Manipulation%20Attacks%20in%20Low%20Observable%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Rajasekaran,%20James%20Ranjith%20Kumar&rft.date=2023-11-01&rft.volume=14&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3266834&rft_dat=%3Cproquest_RIE%3E2879381782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879381782&rft_id=info:pmid/&rft_ieee_id=10102316&rfr_iscdi=true