Real-Time Optimal Power Flow

Future power networks are expected to incorporate a large number of distributed energy resources, which introduce randomness and fluctuations as well as fast control capabilities. But traditional optimal power flow methods are only appropriate for applications that operate on a slow timescale. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2017-11, Vol.8 (6), p.2963-2973
Hauptverfasser: Yujie Tang, Dvijotham, Krishnamurthy, Low, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2973
container_issue 6
container_start_page 2963
container_title IEEE transactions on smart grid
container_volume 8
creator Yujie Tang
Dvijotham, Krishnamurthy
Low, Steven
description Future power networks are expected to incorporate a large number of distributed energy resources, which introduce randomness and fluctuations as well as fast control capabilities. But traditional optimal power flow methods are only appropriate for applications that operate on a slow timescale. In this paper, we build on recent work to develop a real-time algorithm for AC optimal power flow, based on quasi-Newton methods. The algorithm uses second-order information to provide suboptimal solutions on a fast timescale, and can be shown to track the optimal power flow solution when the estimated second-order information is sufficiently accurate. We also give a specific implementation based on L-BFGS-B method, and show by simulation that the proposed algorithm has good performance and is computationally efficient.
doi_str_mv 10.1109/TSG.2017.2704922
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2017_2704922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7929408</ieee_id><sourcerecordid>1955757806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7882c6746bfe356fda2c7619dc0030e8dccee98f8eb68dbc580dcb8bf86fb2803</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNTeBT0EPCfO7ma_jlJsFQoVjecl2cxCSmriJqX4792S0rnMHN6P4SHknkJGKZjn4mudMaAqYwpyw9gVmVGTm5SDpNeXW_BbshiGHcThnEtmZuTxE8s2LZo9Jtt-bPZlm3x0RwzJqu2Od-TGl-2Ai_Oek-_Va7F8Szfb9fvyZZO6GDOmSmvmpMpl5ZEL6euSOSWpqV3sAdS1c4hGe42V1HXlhIbaVbryWvqKaeBz8jTl9qH7PeAw2l13CD-x0lIjhBJKg4wqmFQudMMQ0Ns-xIfDn6VgTxhsxGBPGOwZQ7Q8TJYGES9yZZjJQfN_qs5WpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955757806</pqid></control><display><type>article</type><title>Real-Time Optimal Power Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Yujie Tang ; Dvijotham, Krishnamurthy ; Low, Steven</creator><creatorcontrib>Yujie Tang ; Dvijotham, Krishnamurthy ; Low, Steven</creatorcontrib><description>Future power networks are expected to incorporate a large number of distributed energy resources, which introduce randomness and fluctuations as well as fast control capabilities. But traditional optimal power flow methods are only appropriate for applications that operate on a slow timescale. In this paper, we build on recent work to develop a real-time algorithm for AC optimal power flow, based on quasi-Newton methods. The algorithm uses second-order information to provide suboptimal solutions on a fast timescale, and can be shown to track the optimal power flow solution when the estimated second-order information is sufficiently accurate. We also give a specific implementation based on L-BFGS-B method, and show by simulation that the proposed algorithm has good performance and is computationally efficient.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2017.2704922</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computational modeling ; Computer simulation ; Cost function ; Distributed generation ; Energy sources ; Heuristic algorithms ; Mathematical model ; Newton methods ; Optimal power flow ; Power flow ; Power system stability ; quasi-Newton method ; Reactive power ; Real time ; Real-time systems ; time-varying optimization ; Wideband communications</subject><ispartof>IEEE transactions on smart grid, 2017-11, Vol.8 (6), p.2963-2973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7882c6746bfe356fda2c7619dc0030e8dccee98f8eb68dbc580dcb8bf86fb2803</citedby><cites>FETCH-LOGICAL-c333t-7882c6746bfe356fda2c7619dc0030e8dccee98f8eb68dbc580dcb8bf86fb2803</cites><orcidid>0000-0002-4921-8372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7929408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7929408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yujie Tang</creatorcontrib><creatorcontrib>Dvijotham, Krishnamurthy</creatorcontrib><creatorcontrib>Low, Steven</creatorcontrib><title>Real-Time Optimal Power Flow</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Future power networks are expected to incorporate a large number of distributed energy resources, which introduce randomness and fluctuations as well as fast control capabilities. But traditional optimal power flow methods are only appropriate for applications that operate on a slow timescale. In this paper, we build on recent work to develop a real-time algorithm for AC optimal power flow, based on quasi-Newton methods. The algorithm uses second-order information to provide suboptimal solutions on a fast timescale, and can be shown to track the optimal power flow solution when the estimated second-order information is sufficiently accurate. We also give a specific implementation based on L-BFGS-B method, and show by simulation that the proposed algorithm has good performance and is computationally efficient.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Cost function</subject><subject>Distributed generation</subject><subject>Energy sources</subject><subject>Heuristic algorithms</subject><subject>Mathematical model</subject><subject>Newton methods</subject><subject>Optimal power flow</subject><subject>Power flow</subject><subject>Power system stability</subject><subject>quasi-Newton method</subject><subject>Reactive power</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>time-varying optimization</subject><subject>Wideband communications</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNTeBT0EPCfO7ma_jlJsFQoVjecl2cxCSmriJqX4792S0rnMHN6P4SHknkJGKZjn4mudMaAqYwpyw9gVmVGTm5SDpNeXW_BbshiGHcThnEtmZuTxE8s2LZo9Jtt-bPZlm3x0RwzJqu2Od-TGl-2Ai_Oek-_Va7F8Szfb9fvyZZO6GDOmSmvmpMpl5ZEL6euSOSWpqV3sAdS1c4hGe42V1HXlhIbaVbryWvqKaeBz8jTl9qH7PeAw2l13CD-x0lIjhBJKg4wqmFQudMMQ0Ns-xIfDn6VgTxhsxGBPGOwZQ7Q8TJYGES9yZZjJQfN_qs5WpA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Yujie Tang</creator><creator>Dvijotham, Krishnamurthy</creator><creator>Low, Steven</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4921-8372</orcidid></search><sort><creationdate>20171101</creationdate><title>Real-Time Optimal Power Flow</title><author>Yujie Tang ; Dvijotham, Krishnamurthy ; Low, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7882c6746bfe356fda2c7619dc0030e8dccee98f8eb68dbc580dcb8bf86fb2803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Cost function</topic><topic>Distributed generation</topic><topic>Energy sources</topic><topic>Heuristic algorithms</topic><topic>Mathematical model</topic><topic>Newton methods</topic><topic>Optimal power flow</topic><topic>Power flow</topic><topic>Power system stability</topic><topic>quasi-Newton method</topic><topic>Reactive power</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>time-varying optimization</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yujie Tang</creatorcontrib><creatorcontrib>Dvijotham, Krishnamurthy</creatorcontrib><creatorcontrib>Low, Steven</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yujie Tang</au><au>Dvijotham, Krishnamurthy</au><au>Low, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Optimal Power Flow</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>8</volume><issue>6</issue><spage>2963</spage><epage>2973</epage><pages>2963-2973</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Future power networks are expected to incorporate a large number of distributed energy resources, which introduce randomness and fluctuations as well as fast control capabilities. But traditional optimal power flow methods are only appropriate for applications that operate on a slow timescale. In this paper, we build on recent work to develop a real-time algorithm for AC optimal power flow, based on quasi-Newton methods. The algorithm uses second-order information to provide suboptimal solutions on a fast timescale, and can be shown to track the optimal power flow solution when the estimated second-order information is sufficiently accurate. We also give a specific implementation based on L-BFGS-B method, and show by simulation that the proposed algorithm has good performance and is computationally efficient.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2017.2704922</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4921-8372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2017-11, Vol.8 (6), p.2963-2973
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2017_2704922
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational modeling
Computer simulation
Cost function
Distributed generation
Energy sources
Heuristic algorithms
Mathematical model
Newton methods
Optimal power flow
Power flow
Power system stability
quasi-Newton method
Reactive power
Real time
Real-time systems
time-varying optimization
Wideband communications
title Real-Time Optimal Power Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Optimal%20Power%20Flow&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Yujie%20Tang&rft.date=2017-11-01&rft.volume=8&rft.issue=6&rft.spage=2963&rft.epage=2973&rft.pages=2963-2973&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2017.2704922&rft_dat=%3Cproquest_RIE%3E1955757806%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955757806&rft_id=info:pmid/&rft_ieee_id=7929408&rfr_iscdi=true