A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids
Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a power...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2018-09, Vol.9 (5), p.4930-4941 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4941 |
---|---|
container_issue | 5 |
container_start_page | 4930 |
container_title | IEEE transactions on smart grid |
container_volume | 9 |
creator | Moslemi, Ramin Mesbahi, Afshin Velni, Javad Mohammadpour |
description | Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks. |
doi_str_mv | 10.1109/TSG.2017.2675960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2017_2675960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7867093</ieee_id><sourcerecordid>2117149358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWGrvgpeAV7fmO9njWm0VCh7ae0yzs7i17tYkFepfb0pL5zID7_1mhofQLSVjSkn5uFzMxoxQPWZKy1KRCzSgpSgLThS9PM-SX6NRjGuSi3OuWDlAHxWeupge8DN46FJwm_YPajzpf11oXecBL2ADPrV9Vzy5mKVquw2985849RlKWcOT_QoCrlJy_ivitsOLbxcSnoW2jjfoqnGbCKNTH6Ll9GU5eS3m77O3STUvPCtpKholnAOhBHhDVyA1M44a6pTntZTCuJoJqilVxjTOSKZXVBNRg_SagyZ8iO6Pa_NzPzuIya77XejyRctoBkXJpckucnT50McYoLHb0OZf95YSe0jS5iTtIUl7SjIjd0ekBYCzXRulScn5Py-SbWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149358</pqid></control><display><type>article</type><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><source>IEEE Electronic Library (IEL)</source><creator>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</creator><creatorcontrib>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</creatorcontrib><description>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2017.2675960</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>chordal sparsity ; Complexity ; Computer simulation ; Covariance ; Covariance matrices ; Cybersecurity ; false data injection attack ; maximum likelihood (ML) estimation ; Maximum likelihood estimation ; Power grids ; Power measurement ; Random variables ; Smart grid ; Smart grids ; Transmission line measurements</subject><ispartof>IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.4930-4941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</citedby><cites>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</cites><orcidid>0000-0002-5275-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7867093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7867093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Velni, Javad Mohammadpour</creatorcontrib><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</description><subject>chordal sparsity</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Cybersecurity</subject><subject>false data injection attack</subject><subject>maximum likelihood (ML) estimation</subject><subject>Maximum likelihood estimation</subject><subject>Power grids</subject><subject>Power measurement</subject><subject>Random variables</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Transmission line measurements</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWGrvgpeAV7fmO9njWm0VCh7ae0yzs7i17tYkFepfb0pL5zID7_1mhofQLSVjSkn5uFzMxoxQPWZKy1KRCzSgpSgLThS9PM-SX6NRjGuSi3OuWDlAHxWeupge8DN46FJwm_YPajzpf11oXecBL2ADPrV9Vzy5mKVquw2985849RlKWcOT_QoCrlJy_ivitsOLbxcSnoW2jjfoqnGbCKNTH6Ll9GU5eS3m77O3STUvPCtpKholnAOhBHhDVyA1M44a6pTntZTCuJoJqilVxjTOSKZXVBNRg_SagyZ8iO6Pa_NzPzuIya77XejyRctoBkXJpckucnT50McYoLHb0OZf95YSe0jS5iTtIUl7SjIjd0ekBYCzXRulScn5Py-SbWw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Moslemi, Ramin</creator><creator>Mesbahi, Afshin</creator><creator>Velni, Javad Mohammadpour</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5275-9081</orcidid></search><sort><creationdate>20180901</creationdate><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><author>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>chordal sparsity</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Cybersecurity</topic><topic>false data injection attack</topic><topic>maximum likelihood (ML) estimation</topic><topic>Maximum likelihood estimation</topic><topic>Power grids</topic><topic>Power measurement</topic><topic>Random variables</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Transmission line measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Velni, Javad Mohammadpour</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moslemi, Ramin</au><au>Mesbahi, Afshin</au><au>Velni, Javad Mohammadpour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>4930</spage><epage>4941</epage><pages>4930-4941</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2017.2675960</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5275-9081</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.4930-4941 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSG_2017_2675960 |
source | IEEE Electronic Library (IEL) |
subjects | chordal sparsity Complexity Computer simulation Covariance Covariance matrices Cybersecurity false data injection attack maximum likelihood (ML) estimation Maximum likelihood estimation Power grids Power measurement Random variables Smart grid Smart grids Transmission line measurements |
title | A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast,%20Decentralized%20Covariance%20Selection-Based%20Approach%20to%20Detect%20Cyber%20Attacks%20in%20Smart%20Grids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Moslemi,%20Ramin&rft.date=2018-09-01&rft.volume=9&rft.issue=5&rft.spage=4930&rft.epage=4941&rft.pages=4930-4941&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2017.2675960&rft_dat=%3Cproquest_RIE%3E2117149358%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149358&rft_id=info:pmid/&rft_ieee_id=7867093&rfr_iscdi=true |