A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids

Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2018-09, Vol.9 (5), p.4930-4941
Hauptverfasser: Moslemi, Ramin, Mesbahi, Afshin, Velni, Javad Mohammadpour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4941
container_issue 5
container_start_page 4930
container_title IEEE transactions on smart grid
container_volume 9
creator Moslemi, Ramin
Mesbahi, Afshin
Velni, Javad Mohammadpour
description Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.
doi_str_mv 10.1109/TSG.2017.2675960
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2017_2675960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7867093</ieee_id><sourcerecordid>2117149358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWGrvgpeAV7fmO9njWm0VCh7ae0yzs7i17tYkFepfb0pL5zID7_1mhofQLSVjSkn5uFzMxoxQPWZKy1KRCzSgpSgLThS9PM-SX6NRjGuSi3OuWDlAHxWeupge8DN46FJwm_YPajzpf11oXecBL2ADPrV9Vzy5mKVquw2985849RlKWcOT_QoCrlJy_ivitsOLbxcSnoW2jjfoqnGbCKNTH6Ll9GU5eS3m77O3STUvPCtpKholnAOhBHhDVyA1M44a6pTntZTCuJoJqilVxjTOSKZXVBNRg_SagyZ8iO6Pa_NzPzuIya77XejyRctoBkXJpckucnT50McYoLHb0OZf95YSe0jS5iTtIUl7SjIjd0ekBYCzXRulScn5Py-SbWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149358</pqid></control><display><type>article</type><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><source>IEEE Electronic Library (IEL)</source><creator>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</creator><creatorcontrib>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</creatorcontrib><description>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2017.2675960</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>chordal sparsity ; Complexity ; Computer simulation ; Covariance ; Covariance matrices ; Cybersecurity ; false data injection attack ; maximum likelihood (ML) estimation ; Maximum likelihood estimation ; Power grids ; Power measurement ; Random variables ; Smart grid ; Smart grids ; Transmission line measurements</subject><ispartof>IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.4930-4941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</citedby><cites>FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</cites><orcidid>0000-0002-5275-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7867093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7867093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Velni, Javad Mohammadpour</creatorcontrib><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</description><subject>chordal sparsity</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Cybersecurity</subject><subject>false data injection attack</subject><subject>maximum likelihood (ML) estimation</subject><subject>Maximum likelihood estimation</subject><subject>Power grids</subject><subject>Power measurement</subject><subject>Random variables</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Transmission line measurements</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWGrvgpeAV7fmO9njWm0VCh7ae0yzs7i17tYkFepfb0pL5zID7_1mhofQLSVjSkn5uFzMxoxQPWZKy1KRCzSgpSgLThS9PM-SX6NRjGuSi3OuWDlAHxWeupge8DN46FJwm_YPajzpf11oXecBL2ADPrV9Vzy5mKVquw2985849RlKWcOT_QoCrlJy_ivitsOLbxcSnoW2jjfoqnGbCKNTH6Ll9GU5eS3m77O3STUvPCtpKholnAOhBHhDVyA1M44a6pTntZTCuJoJqilVxjTOSKZXVBNRg_SagyZ8iO6Pa_NzPzuIya77XejyRctoBkXJpckucnT50McYoLHb0OZf95YSe0jS5iTtIUl7SjIjd0ekBYCzXRulScn5Py-SbWw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Moslemi, Ramin</creator><creator>Mesbahi, Afshin</creator><creator>Velni, Javad Mohammadpour</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5275-9081</orcidid></search><sort><creationdate>20180901</creationdate><title>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</title><author>Moslemi, Ramin ; Mesbahi, Afshin ; Velni, Javad Mohammadpour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f64aae464ec81be5728a181a6c3d5548ad241711688fa8527b1704de5c73e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>chordal sparsity</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Cybersecurity</topic><topic>false data injection attack</topic><topic>maximum likelihood (ML) estimation</topic><topic>Maximum likelihood estimation</topic><topic>Power grids</topic><topic>Power measurement</topic><topic>Random variables</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Transmission line measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Velni, Javad Mohammadpour</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moslemi, Ramin</au><au>Mesbahi, Afshin</au><au>Velni, Javad Mohammadpour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>4930</spage><epage>4941</epage><pages>4930-4941</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Recent studies have shown that an attacker can compromise some of the power grid measurements to mislead the conventional state estimators (SEs), since the manipulated measurements can pass the SE residue tests. Statistical structure learning-based approaches have been recently introduced as a powerful tool to detect some of the most complicated cyber attacks. However, the expensive computational complexity of the learning process limits the applicability of these approaches for real time cyber attack detection. This paper proposes a fast and decentralized approach for cyber attack detection based on a maximum likelihood (ML) estimation which exploits the near chordal sparsity of power grids to establish an efficient framework to solve the associated ML estimation problem. The proposed detection method is then decomposed to several local ML estimation problems; this would ensure privacy and reduce the complexity of the underlying problem. The simulation studies validate the efficiency of the proposed method in detecting truly complicated stealthy false data injection attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2017.2675960</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5275-9081</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-09, Vol.9 (5), p.4930-4941
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2017_2675960
source IEEE Electronic Library (IEL)
subjects chordal sparsity
Complexity
Computer simulation
Covariance
Covariance matrices
Cybersecurity
false data injection attack
maximum likelihood (ML) estimation
Maximum likelihood estimation
Power grids
Power measurement
Random variables
Smart grid
Smart grids
Transmission line measurements
title A Fast, Decentralized Covariance Selection-Based Approach to Detect Cyber Attacks in Smart Grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast,%20Decentralized%20Covariance%20Selection-Based%20Approach%20to%20Detect%20Cyber%20Attacks%20in%20Smart%20Grids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Moslemi,%20Ramin&rft.date=2018-09-01&rft.volume=9&rft.issue=5&rft.spage=4930&rft.epage=4941&rft.pages=4930-4941&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2017.2675960&rft_dat=%3Cproquest_RIE%3E2117149358%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149358&rft_id=info:pmid/&rft_ieee_id=7867093&rfr_iscdi=true