Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads

We study the optimal operation of energy storage owned by a consumer who has intermittent renewable generation and faces time-varying (random) electricity prices and different types of ac/dc loads. We formulate the optimal storage operation problem as a finite-horizon dynamic program, with an object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2018-05, Vol.9 (3), p.2314-2326
Hauptverfasser: Jin, Jiangliang, Xu, Yunjian, Khalid, Yawar, Ul Hassan, Naveed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2326
container_issue 3
container_start_page 2314
container_title IEEE transactions on smart grid
container_volume 9
creator Jin, Jiangliang
Xu, Yunjian
Khalid, Yawar
Ul Hassan, Naveed
description We study the optimal operation of energy storage owned by a consumer who has intermittent renewable generation and faces time-varying (random) electricity prices and different types of ac/dc loads. We formulate the optimal storage operation problem as a finite-horizon dynamic program, with an objective of minimizing the expected energy cost. The incorporation of different types of ac/dc energy sources and appliances complicates the sequential decision making problem on storage operation. We provide a complete characterization on an optimal threshold policy, and implement the characterized optimal policy in realistic settings with random renewable generation and electricity prices. Numerical results demonstrate that the optimal dynamic programming (DP) solution saves 5%-12% of the total cost resulting from conventional DP solutions (that ignore the difference in ac/dc conversion efficiencies). Further, the value of storage (the consumer's net benefit obtained by optimally operating the storage) increases with renewable generation. For example, as the (average) solar generation increases from 40% to 100% of the average (total) demand, the value of a 32 kWh (80 kWh) storage increases from 2.0% to 5.4% (7.2% to 14.9%, respectively) of the maximum energy cost.
doi_str_mv 10.1109/TSG.2016.2611245
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2016_2611245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7571137</ieee_id><sourcerecordid>10_1109_TSG_2016_2611245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7e9c77f1cc7bc272142580dfdd48b148646674a966479493361940b29bf479933</originalsourceid><addsrcrecordid>eNo9UF1rgzAUDWODla7vg73kD2hzk5iYx-K6diAIrWOPIWrsHFYlCqP_fimV3pd77se53HMQegUSAhC1zo-7kBIQIRUAlEcPaAGKq4ARAY93HLFntBrHX-KDMSaoWqA8G6bmbFqcDdaZqek73Nd421l3uuDj1Dtzsvi7mX7wwXRVf8YH29k_U7QW7zyaKX6EN8n6PcFpb6rxBT3Vph3tas5L9PWxzZN9kGa7z2STBiUVbAqkVaWUNZSlLEoqKXAaxaSqq4rHBfBYcCEkN0oILr0C_7EXQgqqito3fL1E5Ha3dP04OlvrwXkx7qKB6Ksx2hujr8bo2RhPebtRGmvtfV1GEoBJ9g9W0FyL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Jiangliang ; Xu, Yunjian ; Khalid, Yawar ; Ul Hassan, Naveed</creator><creatorcontrib>Jin, Jiangliang ; Xu, Yunjian ; Khalid, Yawar ; Ul Hassan, Naveed</creatorcontrib><description>We study the optimal operation of energy storage owned by a consumer who has intermittent renewable generation and faces time-varying (random) electricity prices and different types of ac/dc loads. We formulate the optimal storage operation problem as a finite-horizon dynamic program, with an objective of minimizing the expected energy cost. The incorporation of different types of ac/dc energy sources and appliances complicates the sequential decision making problem on storage operation. We provide a complete characterization on an optimal threshold policy, and implement the characterized optimal policy in realistic settings with random renewable generation and electricity prices. Numerical results demonstrate that the optimal dynamic programming (DP) solution saves 5%-12% of the total cost resulting from conventional DP solutions (that ignore the difference in ac/dc conversion efficiencies). Further, the value of storage (the consumer's net benefit obtained by optimally operating the storage) increases with renewable generation. For example, as the (average) solar generation increases from 40% to 100% of the average (total) demand, the value of a 32 kWh (80 kWh) storage increases from 2.0% to 5.4% (7.2% to 14.9%, respectively) of the maximum energy cost.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2611245</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>AC-DC conversion ; Batteries ; DC-DC power converters ; demand response ; Dynamic programming ; Energy storage ; Heuristic algorithms ; Home appliances ; Renewable energy sources ; renewable generation</subject><ispartof>IEEE transactions on smart grid, 2018-05, Vol.9 (3), p.2314-2326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7e9c77f1cc7bc272142580dfdd48b148646674a966479493361940b29bf479933</citedby><cites>FETCH-LOGICAL-c263t-7e9c77f1cc7bc272142580dfdd48b148646674a966479493361940b29bf479933</cites><orcidid>0000-0003-0110-8032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7571137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7571137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Jiangliang</creatorcontrib><creatorcontrib>Xu, Yunjian</creatorcontrib><creatorcontrib>Khalid, Yawar</creatorcontrib><creatorcontrib>Ul Hassan, Naveed</creatorcontrib><title>Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>We study the optimal operation of energy storage owned by a consumer who has intermittent renewable generation and faces time-varying (random) electricity prices and different types of ac/dc loads. We formulate the optimal storage operation problem as a finite-horizon dynamic program, with an objective of minimizing the expected energy cost. The incorporation of different types of ac/dc energy sources and appliances complicates the sequential decision making problem on storage operation. We provide a complete characterization on an optimal threshold policy, and implement the characterized optimal policy in realistic settings with random renewable generation and electricity prices. Numerical results demonstrate that the optimal dynamic programming (DP) solution saves 5%-12% of the total cost resulting from conventional DP solutions (that ignore the difference in ac/dc conversion efficiencies). Further, the value of storage (the consumer's net benefit obtained by optimally operating the storage) increases with renewable generation. For example, as the (average) solar generation increases from 40% to 100% of the average (total) demand, the value of a 32 kWh (80 kWh) storage increases from 2.0% to 5.4% (7.2% to 14.9%, respectively) of the maximum energy cost.</description><subject>AC-DC conversion</subject><subject>Batteries</subject><subject>DC-DC power converters</subject><subject>demand response</subject><subject>Dynamic programming</subject><subject>Energy storage</subject><subject>Heuristic algorithms</subject><subject>Home appliances</subject><subject>Renewable energy sources</subject><subject>renewable generation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1rgzAUDWODla7vg73kD2hzk5iYx-K6diAIrWOPIWrsHFYlCqP_fimV3pd77se53HMQegUSAhC1zo-7kBIQIRUAlEcPaAGKq4ARAY93HLFntBrHX-KDMSaoWqA8G6bmbFqcDdaZqek73Nd421l3uuDj1Dtzsvi7mX7wwXRVf8YH29k_U7QW7zyaKX6EN8n6PcFpb6rxBT3Vph3tas5L9PWxzZN9kGa7z2STBiUVbAqkVaWUNZSlLEoqKXAaxaSqq4rHBfBYcCEkN0oILr0C_7EXQgqqito3fL1E5Ha3dP04OlvrwXkx7qKB6Ksx2hujr8bo2RhPebtRGmvtfV1GEoBJ9g9W0FyL</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Jin, Jiangliang</creator><creator>Xu, Yunjian</creator><creator>Khalid, Yawar</creator><creator>Ul Hassan, Naveed</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0110-8032</orcidid></search><sort><creationdate>20180501</creationdate><title>Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads</title><author>Jin, Jiangliang ; Xu, Yunjian ; Khalid, Yawar ; Ul Hassan, Naveed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7e9c77f1cc7bc272142580dfdd48b148646674a966479493361940b29bf479933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AC-DC conversion</topic><topic>Batteries</topic><topic>DC-DC power converters</topic><topic>demand response</topic><topic>Dynamic programming</topic><topic>Energy storage</topic><topic>Heuristic algorithms</topic><topic>Home appliances</topic><topic>Renewable energy sources</topic><topic>renewable generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jiangliang</creatorcontrib><creatorcontrib>Xu, Yunjian</creatorcontrib><creatorcontrib>Khalid, Yawar</creatorcontrib><creatorcontrib>Ul Hassan, Naveed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Jiangliang</au><au>Xu, Yunjian</au><au>Khalid, Yawar</au><au>Ul Hassan, Naveed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>2314</spage><epage>2326</epage><pages>2314-2326</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>We study the optimal operation of energy storage owned by a consumer who has intermittent renewable generation and faces time-varying (random) electricity prices and different types of ac/dc loads. We formulate the optimal storage operation problem as a finite-horizon dynamic program, with an objective of minimizing the expected energy cost. The incorporation of different types of ac/dc energy sources and appliances complicates the sequential decision making problem on storage operation. We provide a complete characterization on an optimal threshold policy, and implement the characterized optimal policy in realistic settings with random renewable generation and electricity prices. Numerical results demonstrate that the optimal dynamic programming (DP) solution saves 5%-12% of the total cost resulting from conventional DP solutions (that ignore the difference in ac/dc conversion efficiencies). Further, the value of storage (the consumer's net benefit obtained by optimally operating the storage) increases with renewable generation. For example, as the (average) solar generation increases from 40% to 100% of the average (total) demand, the value of a 32 kWh (80 kWh) storage increases from 2.0% to 5.4% (7.2% to 14.9%, respectively) of the maximum energy cost.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2016.2611245</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0110-8032</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-05, Vol.9 (3), p.2314-2326
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2016_2611245
source IEEE Electronic Library (IEL)
subjects AC-DC conversion
Batteries
DC-DC power converters
demand response
Dynamic programming
Energy storage
Heuristic algorithms
Home appliances
Renewable energy sources
renewable generation
title Optimal Operation of Energy Storage With Random Renewable Generation and AC/DC Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Operation%20of%20Energy%20Storage%20With%20Random%20Renewable%20Generation%20and%20AC/DC%20Loads&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Jin,%20Jiangliang&rft.date=2018-05-01&rft.volume=9&rft.issue=3&rft.spage=2314&rft.epage=2326&rft.pages=2314-2326&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2611245&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2016_2611245%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7571137&rfr_iscdi=true