Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case
The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distrib...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2018-01, Vol.9 (1), p.111-121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 1 |
container_start_page | 111 |
container_title | IEEE transactions on smart grid |
container_volume | 9 |
creator | Qiuyu Peng Low, Steven H. |
description | The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distributed solutions for real-time feedback control. This is difficult due to the nonlinearity of the power flow equations. In this paper, we propose a solution for balanced radial networks. It exploits recent results that suggest solving for a globally optimal solution of OPF over a radial network through the second-order cone program relaxation. Our distributed algorithm is based on alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative method, our decomposition allows us to derive closed form solutions for these subproblems, greatly speeding up each ADMM iteration. We illustrate the scalability of the proposed algorithm by simulating it on a real-world 2065-bus distribution network. |
doi_str_mv | 10.1109/TSG.2016.2546305 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2016_2546305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7440858</ieee_id><sourcerecordid>10_1109_TSG_2016_2546305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c1131d9a6d22546f1aa3749396e640fc34ce5f9336c6974b06366575f3a95ed33</originalsourceid><addsrcrecordid>eNo9UMFOAjEQbYwmEuRu4qXx7GK703apN0RBEiJE8OShKd0uVBeWtDXEv7cEwmQyM8m8N3nzELqlpEspkY-L-aibEyq6OWcCCL9ALSqZzIAIenmeOVyjTgjfJAUAiFy20NeLC9G75W-0JZ7uotvoGs-avfV4WDd73K9XjXdxvcFV4_GHLl3av9u4b_xPeMDjJ_ysa701iT1321Vt8Wytg8WDVG7QVaXrYDun3kafw9fF4C2bTEfjQX-SGeAiZoZSoKXUoswP8iuqNRRMghRWMFIZYMbySibBRsiCLYkAIXjBK9CS2xKgje6Pd5sQnQrGRWvWptlurYmKcpZSJhA5goxvQvC2UjufnvV_ihJ1MFElE9XBRHUyMVHujhRnrT3DC8ZIj_fgH53ea2k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case</title><source>IEEE Electronic Library (IEL)</source><creator>Qiuyu Peng ; Low, Steven H.</creator><creatorcontrib>Qiuyu Peng ; Low, Steven H. ; California Inst. of Technology (CalTech), Pasadena, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distributed solutions for real-time feedback control. This is difficult due to the nonlinearity of the power flow equations. In this paper, we propose a solution for balanced radial networks. It exploits recent results that suggest solving for a globally optimal solution of OPF over a radial network through the second-order cone program relaxation. Our distributed algorithm is based on alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative method, our decomposition allows us to derive closed form solutions for these subproblems, greatly speeding up each ADMM iteration. We illustrate the scalability of the proposed algorithm by simulating it on a real-world 2065-bus distribution network.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2546305</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Closed-form solutions ; Convergence ; Distributed algorithms ; Engineering ; Indexes ; Mathematical model ; nonlinear systems ; Optimization ; Power distribution ; power system control ; Scalability</subject><ispartof>IEEE transactions on smart grid, 2018-01, Vol.9 (1), p.111-121</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c1131d9a6d22546f1aa3749396e640fc34ce5f9336c6974b06366575f3a95ed33</citedby><cites>FETCH-LOGICAL-c356t-c1131d9a6d22546f1aa3749396e640fc34ce5f9336c6974b06366575f3a95ed33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7440858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7440858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1541549$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiuyu Peng</creatorcontrib><creatorcontrib>Low, Steven H.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distributed solutions for real-time feedback control. This is difficult due to the nonlinearity of the power flow equations. In this paper, we propose a solution for balanced radial networks. It exploits recent results that suggest solving for a globally optimal solution of OPF over a radial network through the second-order cone program relaxation. Our distributed algorithm is based on alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative method, our decomposition allows us to derive closed form solutions for these subproblems, greatly speeding up each ADMM iteration. We illustrate the scalability of the proposed algorithm by simulating it on a real-world 2065-bus distribution network.</description><subject>Closed-form solutions</subject><subject>Convergence</subject><subject>Distributed algorithms</subject><subject>Engineering</subject><subject>Indexes</subject><subject>Mathematical model</subject><subject>nonlinear systems</subject><subject>Optimization</subject><subject>Power distribution</subject><subject>power system control</subject><subject>Scalability</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMFOAjEQbYwmEuRu4qXx7GK703apN0RBEiJE8OShKd0uVBeWtDXEv7cEwmQyM8m8N3nzELqlpEspkY-L-aibEyq6OWcCCL9ALSqZzIAIenmeOVyjTgjfJAUAiFy20NeLC9G75W-0JZ7uotvoGs-avfV4WDd73K9XjXdxvcFV4_GHLl3av9u4b_xPeMDjJ_ysa701iT1321Vt8Wytg8WDVG7QVaXrYDun3kafw9fF4C2bTEfjQX-SGeAiZoZSoKXUoswP8iuqNRRMghRWMFIZYMbySibBRsiCLYkAIXjBK9CS2xKgje6Pd5sQnQrGRWvWptlurYmKcpZSJhA5goxvQvC2UjufnvV_ihJ1MFElE9XBRHUyMVHujhRnrT3DC8ZIj_fgH53ea2k</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Qiuyu Peng</creator><creator>Low, Steven H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201801</creationdate><title>Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case</title><author>Qiuyu Peng ; Low, Steven H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c1131d9a6d22546f1aa3749396e640fc34ce5f9336c6974b06366575f3a95ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Closed-form solutions</topic><topic>Convergence</topic><topic>Distributed algorithms</topic><topic>Engineering</topic><topic>Indexes</topic><topic>Mathematical model</topic><topic>nonlinear systems</topic><topic>Optimization</topic><topic>Power distribution</topic><topic>power system control</topic><topic>Scalability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiuyu Peng</creatorcontrib><creatorcontrib>Low, Steven H.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiuyu Peng</au><au>Low, Steven H.</au><aucorp>California Inst. of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-01</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distributed solutions for real-time feedback control. This is difficult due to the nonlinearity of the power flow equations. In this paper, we propose a solution for balanced radial networks. It exploits recent results that suggest solving for a globally optimal solution of OPF over a radial network through the second-order cone program relaxation. Our distributed algorithm is based on alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative method, our decomposition allows us to derive closed form solutions for these subproblems, greatly speeding up each ADMM iteration. We illustrate the scalability of the proposed algorithm by simulating it on a real-world 2065-bus distribution network.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2546305</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2018-01, Vol.9 (1), p.111-121 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSG_2016_2546305 |
source | IEEE Electronic Library (IEL) |
subjects | Closed-form solutions Convergence Distributed algorithms Engineering Indexes Mathematical model nonlinear systems Optimization Power distribution power system control Scalability |
title | Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimal%20Power%20Flow%20Algorithm%20for%20Radial%20Networks,%20I:%20Balanced%20Single%20Phase%20Case&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Qiuyu%20Peng&rft.aucorp=California%20Inst.%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2018-01&rft.volume=9&rft.issue=1&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2546305&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2016_2546305%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7440858&rfr_iscdi=true |