Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid

We utilize a for-profit aggregator-based residential demand response (DR) approach to the smart grid resource allocation problem. The aggregator entity, using a given set of schedulable residential customer assets (e.g., smart appliances), must set a schedule to optimize for a given objective. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2015-07, Vol.6 (4), p.1785-1794
Hauptverfasser: Hansen, Timothy M., Roche, Robin, Suryanarayanan, Siddharth, Maciejewski, Anthony A., Siegel, Howard Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1794
container_issue 4
container_start_page 1785
container_title IEEE transactions on smart grid
container_volume 6
creator Hansen, Timothy M.
Roche, Robin
Suryanarayanan, Siddharth
Maciejewski, Anthony A.
Siegel, Howard Jay
description We utilize a for-profit aggregator-based residential demand response (DR) approach to the smart grid resource allocation problem. The aggregator entity, using a given set of schedulable residential customer assets (e.g., smart appliances), must set a schedule to optimize for a given objective. Here, we consider optimizing for the profit of the aggregator. To encourage customer participation in the residential DR program, a new pricing structure named customer incentive pricing (CIP) is proposed. The aggregator profit is optimized using a proposed heuristic framework, implemented in the form of a genetic algorithm, that must determine a schedule of customer assets and the CIP. To validate our heuristic framework, we simulate the optimization of a large-scale system consisting of 5555 residential customer households and 56 642 schedulable assets using real-pricing data over a period of 24-h. We show that by optimizing purely for economic reasons, the aggregator can enact a beneficial change on the load profile of the overall power system.
doi_str_mv 10.1109/TSG.2015.2399359
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2015_2399359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7046415</ieee_id><sourcerecordid>10_1109_TSG_2015_2399359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-2da168ddb8f98ab912c7d215616404f37b676df0de749f5b1ec93106b82e146f3</originalsourceid><addsrcrecordid>eNo9kEFrAjEUhENpoWK9F3rJH1ibl2Szm6OVVgVBqPa8ZJMXm6KuJPHQ_vquKL7LvMPMMHyEPAMbAzD9ulnPxpxBOeZCa1HqOzIALXUhmIL721-KRzJK6Yf1J4RQXA_IZo6nGFIOlq6OOezDn8mhO1DfRWoOdLLdRtya3MXizSR09BNTd4oW6WS36-zFGw40fyNd703MdBaDeyIP3uwSjq46JF8f75vpvFiuZovpZFlYWde54M6Aqp1ra69r02rgtnIcSgVKMulF1apKOc8cVlL7sgW0WgBTbc0RpPJiSNil18YupYi-OcbQr_htgDVnME0PpjmDaa5g-sjLJRIQ8WavmFQSSvEP1_5e-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Hansen, Timothy M. ; Roche, Robin ; Suryanarayanan, Siddharth ; Maciejewski, Anthony A. ; Siegel, Howard Jay</creator><creatorcontrib>Hansen, Timothy M. ; Roche, Robin ; Suryanarayanan, Siddharth ; Maciejewski, Anthony A. ; Siegel, Howard Jay</creatorcontrib><description>We utilize a for-profit aggregator-based residential demand response (DR) approach to the smart grid resource allocation problem. The aggregator entity, using a given set of schedulable residential customer assets (e.g., smart appliances), must set a schedule to optimize for a given objective. Here, we consider optimizing for the profit of the aggregator. To encourage customer participation in the residential DR program, a new pricing structure named customer incentive pricing (CIP) is proposed. The aggregator profit is optimized using a proposed heuristic framework, implemented in the form of a genetic algorithm, that must determine a schedule of customer assets and the CIP. To validate our heuristic framework, we simulate the optimization of a large-scale system consisting of 5555 residential customer households and 56 642 schedulable assets using real-pricing data over a period of 24-h. We show that by optimizing purely for economic reasons, the aggregator can enact a beneficial change on the load profile of the overall power system.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2015.2399359</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregator ; appliance scheduling ; Biological cells ; Companies ; customer incentive pricing (CIP) ; cyber-physical systems (CPSs) ; Electricity ; heuristic optimization ; Optimization ; Pricing ; Resource management ; Schedules ; smart grid</subject><ispartof>IEEE transactions on smart grid, 2015-07, Vol.6 (4), p.1785-1794</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-2da168ddb8f98ab912c7d215616404f37b676df0de749f5b1ec93106b82e146f3</citedby><cites>FETCH-LOGICAL-c488t-2da168ddb8f98ab912c7d215616404f37b676df0de749f5b1ec93106b82e146f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7046415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7046415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hansen, Timothy M.</creatorcontrib><creatorcontrib>Roche, Robin</creatorcontrib><creatorcontrib>Suryanarayanan, Siddharth</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Siegel, Howard Jay</creatorcontrib><title>Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>We utilize a for-profit aggregator-based residential demand response (DR) approach to the smart grid resource allocation problem. The aggregator entity, using a given set of schedulable residential customer assets (e.g., smart appliances), must set a schedule to optimize for a given objective. Here, we consider optimizing for the profit of the aggregator. To encourage customer participation in the residential DR program, a new pricing structure named customer incentive pricing (CIP) is proposed. The aggregator profit is optimized using a proposed heuristic framework, implemented in the form of a genetic algorithm, that must determine a schedule of customer assets and the CIP. To validate our heuristic framework, we simulate the optimization of a large-scale system consisting of 5555 residential customer households and 56 642 schedulable assets using real-pricing data over a period of 24-h. We show that by optimizing purely for economic reasons, the aggregator can enact a beneficial change on the load profile of the overall power system.</description><subject>Aggregator</subject><subject>appliance scheduling</subject><subject>Biological cells</subject><subject>Companies</subject><subject>customer incentive pricing (CIP)</subject><subject>cyber-physical systems (CPSs)</subject><subject>Electricity</subject><subject>heuristic optimization</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Resource management</subject><subject>Schedules</subject><subject>smart grid</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFrAjEUhENpoWK9F3rJH1ibl2Szm6OVVgVBqPa8ZJMXm6KuJPHQ_vquKL7LvMPMMHyEPAMbAzD9ulnPxpxBOeZCa1HqOzIALXUhmIL721-KRzJK6Yf1J4RQXA_IZo6nGFIOlq6OOezDn8mhO1DfRWoOdLLdRtya3MXizSR09BNTd4oW6WS36-zFGw40fyNd703MdBaDeyIP3uwSjq46JF8f75vpvFiuZovpZFlYWde54M6Aqp1ra69r02rgtnIcSgVKMulF1apKOc8cVlL7sgW0WgBTbc0RpPJiSNil18YupYi-OcbQr_htgDVnME0PpjmDaa5g-sjLJRIQ8WavmFQSSvEP1_5e-A</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Hansen, Timothy M.</creator><creator>Roche, Robin</creator><creator>Suryanarayanan, Siddharth</creator><creator>Maciejewski, Anthony A.</creator><creator>Siegel, Howard Jay</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201507</creationdate><title>Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid</title><author>Hansen, Timothy M. ; Roche, Robin ; Suryanarayanan, Siddharth ; Maciejewski, Anthony A. ; Siegel, Howard Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-2da168ddb8f98ab912c7d215616404f37b676df0de749f5b1ec93106b82e146f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aggregator</topic><topic>appliance scheduling</topic><topic>Biological cells</topic><topic>Companies</topic><topic>customer incentive pricing (CIP)</topic><topic>cyber-physical systems (CPSs)</topic><topic>Electricity</topic><topic>heuristic optimization</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Resource management</topic><topic>Schedules</topic><topic>smart grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Timothy M.</creatorcontrib><creatorcontrib>Roche, Robin</creatorcontrib><creatorcontrib>Suryanarayanan, Siddharth</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Siegel, Howard Jay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hansen, Timothy M.</au><au>Roche, Robin</au><au>Suryanarayanan, Siddharth</au><au>Maciejewski, Anthony A.</au><au>Siegel, Howard Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2015-07</date><risdate>2015</risdate><volume>6</volume><issue>4</issue><spage>1785</spage><epage>1794</epage><pages>1785-1794</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>We utilize a for-profit aggregator-based residential demand response (DR) approach to the smart grid resource allocation problem. The aggregator entity, using a given set of schedulable residential customer assets (e.g., smart appliances), must set a schedule to optimize for a given objective. Here, we consider optimizing for the profit of the aggregator. To encourage customer participation in the residential DR program, a new pricing structure named customer incentive pricing (CIP) is proposed. The aggregator profit is optimized using a proposed heuristic framework, implemented in the form of a genetic algorithm, that must determine a schedule of customer assets and the CIP. To validate our heuristic framework, we simulate the optimization of a large-scale system consisting of 5555 residential customer households and 56 642 schedulable assets using real-pricing data over a period of 24-h. We show that by optimizing purely for economic reasons, the aggregator can enact a beneficial change on the load profile of the overall power system.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2015.2399359</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2015-07, Vol.6 (4), p.1785-1794
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2015_2399359
source IEEE Electronic Library (IEL)
subjects Aggregator
appliance scheduling
Biological cells
Companies
customer incentive pricing (CIP)
cyber-physical systems (CPSs)
Electricity
heuristic optimization
Optimization
Pricing
Resource management
Schedules
smart grid
title Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20Optimization%20for%20an%20Aggregator-Based%20Resource%20Allocation%20in%20the%20Smart%20Grid&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Hansen,%20Timothy%20M.&rft.date=2015-07&rft.volume=6&rft.issue=4&rft.spage=1785&rft.epage=1794&rft.pages=1785-1794&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2015.2399359&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2015_2399359%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7046415&rfr_iscdi=true