A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids

This paper introduced a decentralized voltage control strategy for dc microgrids that is based on the droop method. The proposed distributed secondary voltage control utilizes an average voltage sharing scheme to compensate the voltage deviation caused by the droop control. Through nonexplicit commu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2015-05, Vol.6 (3), p.1096-1106
Hauptverfasser: Po-Hsu Huang, Po-Chun Liu, Weidong Xiao, El Moursi, Mohamed Shawky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 3
container_start_page 1096
container_title IEEE transactions on smart grid
container_volume 6
creator Po-Hsu Huang
Po-Chun Liu
Weidong Xiao
El Moursi, Mohamed Shawky
description This paper introduced a decentralized voltage control strategy for dc microgrids that is based on the droop method. The proposed distributed secondary voltage control utilizes an average voltage sharing scheme to compensate the voltage deviation caused by the droop control. Through nonexplicit communication, the proposed control strategy can perform precise terminal voltage regulation and enhance the system reliability against system failures. The distributed voltage compensators that resemble a centralized secondary voltage controller are implemented with the bi-proper anti-wind-up design method to solve the integration issues that necessarily lead to the saturation of the controller output efforts. The proposed concept of pilot bus voltage regulation shows the possibility of managing the terminal voltage without centralized structure. Moreover, the network dynamics are illustrated with a focus on cable resonance mode based on the eigenvalue analysis and small-signal modeling; analytical explanations with the development of equivalent circuits give a clear picture regarding how the controller parameters and droop gains affect the system damping performance. The proposed derivative droop control has been demonstrated to damp the oscillation and to improve the system stability during transients. Finally, the effectiveness and feasibility of the proposed control strategy are validated by both simulation and experimental evaluation.
doi_str_mv 10.1109/TSG.2014.2357179
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSG_2014_2357179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6908001</ieee_id><sourcerecordid>10_1109_TSG_2014_2357179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8aaba40f0a3d0b5e245da32d4a3ac24b4e1732813ff677568755dd6f3c1a36703</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWLR7wU1eYOpJTi4zyzrVKtS6aHU7pJNkHBmbkgyFvr1TWno2_1n8F_gIeWAwYQyKp_VqPuHAxISj1EwXV2TEClFkCIpdX36Jt2Sc0i8Mh4iKFyOynNJl2LuOzmIIu-zZJGfpdO-iaRz9Dl1_1NWPie22oWXY9jF0dNVH07vmQH2IdFbSj7aOoYmtTffkxpsuufFZ78jX68u6fMsWn_P3crrIagHYZ7kxGyPAg0ELG-m4kNYgt8KgqbnYCMc08pyh90prqXItpbXKY80MKg14R-DUOwynFJ2vdrH9M_FQMaiOSKoBSXVEUp2RDJHHU6R1zl3sqoAcgOE_VEBb0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids</title><source>IEEE Electronic Library (IEL)</source><creator>Po-Hsu Huang ; Po-Chun Liu ; Weidong Xiao ; El Moursi, Mohamed Shawky</creator><creatorcontrib>Po-Hsu Huang ; Po-Chun Liu ; Weidong Xiao ; El Moursi, Mohamed Shawky</creatorcontrib><description>This paper introduced a decentralized voltage control strategy for dc microgrids that is based on the droop method. The proposed distributed secondary voltage control utilizes an average voltage sharing scheme to compensate the voltage deviation caused by the droop control. Through nonexplicit communication, the proposed control strategy can perform precise terminal voltage regulation and enhance the system reliability against system failures. The distributed voltage compensators that resemble a centralized secondary voltage controller are implemented with the bi-proper anti-wind-up design method to solve the integration issues that necessarily lead to the saturation of the controller output efforts. The proposed concept of pilot bus voltage regulation shows the possibility of managing the terminal voltage without centralized structure. Moreover, the network dynamics are illustrated with a focus on cable resonance mode based on the eigenvalue analysis and small-signal modeling; analytical explanations with the development of equivalent circuits give a clear picture regarding how the controller parameters and droop gains affect the system damping performance. The proposed derivative droop control has been demonstrated to damp the oscillation and to improve the system stability during transients. Finally, the effectiveness and feasibility of the proposed control strategy are validated by both simulation and experimental evaluation.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2014.2357179</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decentralized control ; droop method ; Eigenvalues and eigenfunctions ; Equivalent circuits ; hierarchical control ; Indexes ; Microgrids ; microgrids (MGs) ; parallel load sharing ; Reliability ; Resistance ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2015-05, Vol.6 (3), p.1096-1106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8aaba40f0a3d0b5e245da32d4a3ac24b4e1732813ff677568755dd6f3c1a36703</citedby><cites>FETCH-LOGICAL-c403t-8aaba40f0a3d0b5e245da32d4a3ac24b4e1732813ff677568755dd6f3c1a36703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6908001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6908001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Po-Hsu Huang</creatorcontrib><creatorcontrib>Po-Chun Liu</creatorcontrib><creatorcontrib>Weidong Xiao</creatorcontrib><creatorcontrib>El Moursi, Mohamed Shawky</creatorcontrib><title>A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper introduced a decentralized voltage control strategy for dc microgrids that is based on the droop method. The proposed distributed secondary voltage control utilizes an average voltage sharing scheme to compensate the voltage deviation caused by the droop control. Through nonexplicit communication, the proposed control strategy can perform precise terminal voltage regulation and enhance the system reliability against system failures. The distributed voltage compensators that resemble a centralized secondary voltage controller are implemented with the bi-proper anti-wind-up design method to solve the integration issues that necessarily lead to the saturation of the controller output efforts. The proposed concept of pilot bus voltage regulation shows the possibility of managing the terminal voltage without centralized structure. Moreover, the network dynamics are illustrated with a focus on cable resonance mode based on the eigenvalue analysis and small-signal modeling; analytical explanations with the development of equivalent circuits give a clear picture regarding how the controller parameters and droop gains affect the system damping performance. The proposed derivative droop control has been demonstrated to damp the oscillation and to improve the system stability during transients. Finally, the effectiveness and feasibility of the proposed control strategy are validated by both simulation and experimental evaluation.</description><subject>Decentralized control</subject><subject>droop method</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equivalent circuits</subject><subject>hierarchical control</subject><subject>Indexes</subject><subject>Microgrids</subject><subject>microgrids (MGs)</subject><subject>parallel load sharing</subject><subject>Reliability</subject><subject>Resistance</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWLR7wU1eYOpJTi4zyzrVKtS6aHU7pJNkHBmbkgyFvr1TWno2_1n8F_gIeWAwYQyKp_VqPuHAxISj1EwXV2TEClFkCIpdX36Jt2Sc0i8Mh4iKFyOynNJl2LuOzmIIu-zZJGfpdO-iaRz9Dl1_1NWPie22oWXY9jF0dNVH07vmQH2IdFbSj7aOoYmtTffkxpsuufFZ78jX68u6fMsWn_P3crrIagHYZ7kxGyPAg0ELG-m4kNYgt8KgqbnYCMc08pyh90prqXItpbXKY80MKg14R-DUOwynFJ2vdrH9M_FQMaiOSKoBSXVEUp2RDJHHU6R1zl3sqoAcgOE_VEBb0g</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Po-Hsu Huang</creator><creator>Po-Chun Liu</creator><creator>Weidong Xiao</creator><creator>El Moursi, Mohamed Shawky</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150501</creationdate><title>A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids</title><author>Po-Hsu Huang ; Po-Chun Liu ; Weidong Xiao ; El Moursi, Mohamed Shawky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8aaba40f0a3d0b5e245da32d4a3ac24b4e1732813ff677568755dd6f3c1a36703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decentralized control</topic><topic>droop method</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equivalent circuits</topic><topic>hierarchical control</topic><topic>Indexes</topic><topic>Microgrids</topic><topic>microgrids (MGs)</topic><topic>parallel load sharing</topic><topic>Reliability</topic><topic>Resistance</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Po-Hsu Huang</creatorcontrib><creatorcontrib>Po-Chun Liu</creatorcontrib><creatorcontrib>Weidong Xiao</creatorcontrib><creatorcontrib>El Moursi, Mohamed Shawky</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Po-Hsu Huang</au><au>Po-Chun Liu</au><au>Weidong Xiao</au><au>El Moursi, Mohamed Shawky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>6</volume><issue>3</issue><spage>1096</spage><epage>1106</epage><pages>1096-1106</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper introduced a decentralized voltage control strategy for dc microgrids that is based on the droop method. The proposed distributed secondary voltage control utilizes an average voltage sharing scheme to compensate the voltage deviation caused by the droop control. Through nonexplicit communication, the proposed control strategy can perform precise terminal voltage regulation and enhance the system reliability against system failures. The distributed voltage compensators that resemble a centralized secondary voltage controller are implemented with the bi-proper anti-wind-up design method to solve the integration issues that necessarily lead to the saturation of the controller output efforts. The proposed concept of pilot bus voltage regulation shows the possibility of managing the terminal voltage without centralized structure. Moreover, the network dynamics are illustrated with a focus on cable resonance mode based on the eigenvalue analysis and small-signal modeling; analytical explanations with the development of equivalent circuits give a clear picture regarding how the controller parameters and droop gains affect the system damping performance. The proposed derivative droop control has been demonstrated to damp the oscillation and to improve the system stability during transients. Finally, the effectiveness and feasibility of the proposed control strategy are validated by both simulation and experimental evaluation.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2014.2357179</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2015-05, Vol.6 (3), p.1096-1106
issn 1949-3053
1949-3061
language eng
recordid cdi_crossref_primary_10_1109_TSG_2014_2357179
source IEEE Electronic Library (IEL)
subjects Decentralized control
droop method
Eigenvalues and eigenfunctions
Equivalent circuits
hierarchical control
Indexes
Microgrids
microgrids (MGs)
parallel load sharing
Reliability
Resistance
Voltage control
title A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Droop-Based%20Average%20Voltage%20Sharing%20Control%20Strategy%20for%20DC%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Po-Hsu%20Huang&rft.date=2015-05-01&rft.volume=6&rft.issue=3&rft.spage=1096&rft.epage=1106&rft.pages=1096-1106&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2014.2357179&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2014_2357179%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6908001&rfr_iscdi=true