Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing
Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often const...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2024-10, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on services computing |
container_volume | |
creator | Cao, Weipeng Gu, Jiongjiong Ming, Zhong Cai, Zhiyuan Wang, Yuzhao Ji, Changping Xiao, Zhijiao Feng, Yuhong Liu, Ye Zhang, Liang-Jie |
description | Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (\gt 80%) but with low utilization (\lt 25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability. |
doi_str_mv | 10.1109/TSC.2024.3489433 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2024_3489433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740339</ieee_id><sourcerecordid>10_1109_TSC_2024_3489433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-f0f94e62c3aa9fa027cc252ef3a3c76cb695ebb58abb07636d256f024e3861973</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOKd3Dx7yBTrTvG3SeBtl1cFQcLuXNHuj0bQZ6eb029uxgZ6ew_MHnh8htymbpClT96tlOeGMZxPICpUBnJERB8kTxll2TkapApWkILNLctX3H4wJXhRqRFzl8ds1HmkZ2s1u67q3Bzqlz7inVdQt7kP8pDZEOm83MXwNNn3FPuyiQTr1Phi9daGjulvTpXnH9c4fIq6jM6_7rTN_s9fkwmrf481Jx2RVzVblU7J4eZyX00ViBFeJZVZlKLgBrZXVjEtjeM7RggYjhWmEyrFp8kI3DZMCxJrnwg6_EQqRKgljwo6zJoa-j2jrTXStjj91yuoDqXogVR9I1SdSQ-XuWHGI-C8uMwag4Bdn2mYS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</creator><creatorcontrib>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</creatorcontrib><description><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3489433</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Computational modeling ; Computer architecture ; Data centers ; Degradation ; elastic computing ; Flexible computing ; Logic ; performance degradation detection ; Processor scheduling ; Quality of service ; Real-time systems ; Resource management ; service level agreements</subject><ispartof>IEEE transactions on services computing, 2024-10, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7691-5587 ; 0000-0002-6219-0853 ; 0000-0003-2414-6066 ; 0000-0002-9664-821X ; 0000-0001-9310-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Weipeng</creatorcontrib><creatorcontrib>Gu, Jiongjiong</creatorcontrib><creatorcontrib>Ming, Zhong</creatorcontrib><creatorcontrib>Cai, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Yuzhao</creatorcontrib><creatorcontrib>Ji, Changping</creatorcontrib><creatorcontrib>Xiao, Zhijiao</creatorcontrib><creatorcontrib>Feng, Yuhong</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Liang-Jie</creatorcontrib><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Degradation</subject><subject>elastic computing</subject><subject>Flexible computing</subject><subject>Logic</subject><subject>performance degradation detection</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Real-time systems</subject><subject>Resource management</subject><subject>service level agreements</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LwzAYxoMoOKd3Dx7yBTrTvG3SeBtl1cFQcLuXNHuj0bQZ6eb029uxgZ6ew_MHnh8htymbpClT96tlOeGMZxPICpUBnJERB8kTxll2TkapApWkILNLctX3H4wJXhRqRFzl8ds1HmkZ2s1u67q3Bzqlz7inVdQt7kP8pDZEOm83MXwNNn3FPuyiQTr1Phi9daGjulvTpXnH9c4fIq6jM6_7rTN_s9fkwmrf481Jx2RVzVblU7J4eZyX00ViBFeJZVZlKLgBrZXVjEtjeM7RggYjhWmEyrFp8kI3DZMCxJrnwg6_EQqRKgljwo6zJoa-j2jrTXStjj91yuoDqXogVR9I1SdSQ-XuWHGI-C8uMwag4Bdn2mYS</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Cao, Weipeng</creator><creator>Gu, Jiongjiong</creator><creator>Ming, Zhong</creator><creator>Cai, Zhiyuan</creator><creator>Wang, Yuzhao</creator><creator>Ji, Changping</creator><creator>Xiao, Zhijiao</creator><creator>Feng, Yuhong</creator><creator>Liu, Ye</creator><creator>Zhang, Liang-Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7691-5587</orcidid><orcidid>https://orcid.org/0000-0002-6219-0853</orcidid><orcidid>https://orcid.org/0000-0003-2414-6066</orcidid><orcidid>https://orcid.org/0000-0002-9664-821X</orcidid><orcidid>https://orcid.org/0000-0001-9310-3460</orcidid></search><sort><creationdate>20241030</creationdate><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><author>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-f0f94e62c3aa9fa027cc252ef3a3c76cb695ebb58abb07636d256f024e3861973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Degradation</topic><topic>elastic computing</topic><topic>Flexible computing</topic><topic>Logic</topic><topic>performance degradation detection</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Real-time systems</topic><topic>Resource management</topic><topic>service level agreements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Weipeng</creatorcontrib><creatorcontrib>Gu, Jiongjiong</creatorcontrib><creatorcontrib>Ming, Zhong</creatorcontrib><creatorcontrib>Cai, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Yuzhao</creatorcontrib><creatorcontrib>Ji, Changping</creatorcontrib><creatorcontrib>Xiao, Zhijiao</creatorcontrib><creatorcontrib>Feng, Yuhong</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Liang-Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Weipeng</au><au>Gu, Jiongjiong</au><au>Ming, Zhong</au><au>Cai, Zhiyuan</au><au>Wang, Yuzhao</au><au>Ji, Changping</au><au>Xiao, Zhijiao</au><au>Feng, Yuhong</au><au>Liu, Ye</au><au>Zhang, Liang-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-10-30</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3489433</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7691-5587</orcidid><orcidid>https://orcid.org/0000-0002-6219-0853</orcidid><orcidid>https://orcid.org/0000-0003-2414-6066</orcidid><orcidid>https://orcid.org/0000-0002-9664-821X</orcidid><orcidid>https://orcid.org/0000-0001-9310-3460</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2024-10, p.1-14 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2024_3489433 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Computational modeling Computer architecture Data centers Degradation elastic computing Flexible computing Logic performance degradation detection Processor scheduling Quality of service Real-time systems Resource management service level agreements |
title | Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Computing:%20A%20New%20Framework%20for%20Improving%20Resource%20Allocation%20and%20Scheduling%20in%20Elastic%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Cao,%20Weipeng&rft.date=2024-10-30&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3489433&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3489433%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740339&rfr_iscdi=true |