Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing

Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2024-10, p.1-14
Hauptverfasser: Cao, Weipeng, Gu, Jiongjiong, Ming, Zhong, Cai, Zhiyuan, Wang, Yuzhao, Ji, Changping, Xiao, Zhijiao, Feng, Yuhong, Liu, Ye, Zhang, Liang-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on services computing
container_volume
creator Cao, Weipeng
Gu, Jiongjiong
Ming, Zhong
Cai, Zhiyuan
Wang, Yuzhao
Ji, Changping
Xiao, Zhijiao
Feng, Yuhong
Liu, Ye
Zhang, Liang-Jie
description Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (\gt 80%) but with low utilization (\lt 25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.
doi_str_mv 10.1109/TSC.2024.3489433
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2024_3489433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740339</ieee_id><sourcerecordid>10_1109_TSC_2024_3489433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-f0f94e62c3aa9fa027cc252ef3a3c76cb695ebb58abb07636d256f024e3861973</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOKd3Dx7yBTrTvG3SeBtl1cFQcLuXNHuj0bQZ6eb029uxgZ6ew_MHnh8htymbpClT96tlOeGMZxPICpUBnJERB8kTxll2TkapApWkILNLctX3H4wJXhRqRFzl8ds1HmkZ2s1u67q3Bzqlz7inVdQt7kP8pDZEOm83MXwNNn3FPuyiQTr1Phi9daGjulvTpXnH9c4fIq6jM6_7rTN_s9fkwmrf481Jx2RVzVblU7J4eZyX00ViBFeJZVZlKLgBrZXVjEtjeM7RggYjhWmEyrFp8kI3DZMCxJrnwg6_EQqRKgljwo6zJoa-j2jrTXStjj91yuoDqXogVR9I1SdSQ-XuWHGI-C8uMwag4Bdn2mYS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</creator><creatorcontrib>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</creatorcontrib><description><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3489433</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Computational modeling ; Computer architecture ; Data centers ; Degradation ; elastic computing ; Flexible computing ; Logic ; performance degradation detection ; Processor scheduling ; Quality of service ; Real-time systems ; Resource management ; service level agreements</subject><ispartof>IEEE transactions on services computing, 2024-10, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7691-5587 ; 0000-0002-6219-0853 ; 0000-0003-2414-6066 ; 0000-0002-9664-821X ; 0000-0001-9310-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Weipeng</creatorcontrib><creatorcontrib>Gu, Jiongjiong</creatorcontrib><creatorcontrib>Ming, Zhong</creatorcontrib><creatorcontrib>Cai, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Yuzhao</creatorcontrib><creatorcontrib>Ji, Changping</creatorcontrib><creatorcontrib>Xiao, Zhijiao</creatorcontrib><creatorcontrib>Feng, Yuhong</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Liang-Jie</creatorcontrib><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Degradation</subject><subject>elastic computing</subject><subject>Flexible computing</subject><subject>Logic</subject><subject>performance degradation detection</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Real-time systems</subject><subject>Resource management</subject><subject>service level agreements</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LwzAYxoMoOKd3Dx7yBTrTvG3SeBtl1cFQcLuXNHuj0bQZ6eb029uxgZ6ew_MHnh8htymbpClT96tlOeGMZxPICpUBnJERB8kTxll2TkapApWkILNLctX3H4wJXhRqRFzl8ds1HmkZ2s1u67q3Bzqlz7inVdQt7kP8pDZEOm83MXwNNn3FPuyiQTr1Phi9daGjulvTpXnH9c4fIq6jM6_7rTN_s9fkwmrf481Jx2RVzVblU7J4eZyX00ViBFeJZVZlKLgBrZXVjEtjeM7RggYjhWmEyrFp8kI3DZMCxJrnwg6_EQqRKgljwo6zJoa-j2jrTXStjj91yuoDqXogVR9I1SdSQ-XuWHGI-C8uMwag4Bdn2mYS</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Cao, Weipeng</creator><creator>Gu, Jiongjiong</creator><creator>Ming, Zhong</creator><creator>Cai, Zhiyuan</creator><creator>Wang, Yuzhao</creator><creator>Ji, Changping</creator><creator>Xiao, Zhijiao</creator><creator>Feng, Yuhong</creator><creator>Liu, Ye</creator><creator>Zhang, Liang-Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7691-5587</orcidid><orcidid>https://orcid.org/0000-0002-6219-0853</orcidid><orcidid>https://orcid.org/0000-0003-2414-6066</orcidid><orcidid>https://orcid.org/0000-0002-9664-821X</orcidid><orcidid>https://orcid.org/0000-0001-9310-3460</orcidid></search><sort><creationdate>20241030</creationdate><title>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</title><author>Cao, Weipeng ; Gu, Jiongjiong ; Ming, Zhong ; Cai, Zhiyuan ; Wang, Yuzhao ; Ji, Changping ; Xiao, Zhijiao ; Feng, Yuhong ; Liu, Ye ; Zhang, Liang-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-f0f94e62c3aa9fa027cc252ef3a3c76cb695ebb58abb07636d256f024e3861973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Degradation</topic><topic>elastic computing</topic><topic>Flexible computing</topic><topic>Logic</topic><topic>performance degradation detection</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Real-time systems</topic><topic>Resource management</topic><topic>service level agreements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Weipeng</creatorcontrib><creatorcontrib>Gu, Jiongjiong</creatorcontrib><creatorcontrib>Ming, Zhong</creatorcontrib><creatorcontrib>Cai, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Yuzhao</creatorcontrib><creatorcontrib>Ji, Changping</creatorcontrib><creatorcontrib>Xiao, Zhijiao</creatorcontrib><creatorcontrib>Feng, Yuhong</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Liang-Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Weipeng</au><au>Gu, Jiongjiong</au><au>Ming, Zhong</au><au>Cai, Zhiyuan</au><au>Wang, Yuzhao</au><au>Ji, Changping</au><au>Xiao, Zhijiao</au><au>Feng, Yuhong</au><au>Liu, Ye</au><au>Zhang, Liang-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-10-30</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract><![CDATA[Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math notation="LaTeX">\gt </tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math notation="LaTeX">\lt </tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.]]></abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3489433</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7691-5587</orcidid><orcidid>https://orcid.org/0000-0002-6219-0853</orcidid><orcidid>https://orcid.org/0000-0003-2414-6066</orcidid><orcidid>https://orcid.org/0000-0002-9664-821X</orcidid><orcidid>https://orcid.org/0000-0001-9310-3460</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2024-10, p.1-14
issn 1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2024_3489433
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computational modeling
Computer architecture
Data centers
Degradation
elastic computing
Flexible computing
Logic
performance degradation detection
Processor scheduling
Quality of service
Real-time systems
Resource management
service level agreements
title Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Computing:%20A%20New%20Framework%20for%20Improving%20Resource%20Allocation%20and%20Scheduling%20in%20Elastic%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Cao,%20Weipeng&rft.date=2024-10-30&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3489433&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3489433%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740339&rfr_iscdi=true