Server Hazard Risk Awareness User Allocation in Urban-Scale Edges
Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2024-09, Vol.17 (5), p.2862-2875 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2875 |
---|---|
container_issue | 5 |
container_start_page | 2862 |
container_title | IEEE transactions on services computing |
container_volume | 17 |
creator | Liu, Ensheng Zhang, Gaofeng Xu, Liqiang Wu, Wenming Xu, Benzhu Zheng, Liping |
description | Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions. |
doi_str_mv | 10.1109/TSC.2023.3336846 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2023_3336846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10328886</ieee_id><sourcerecordid>10_1109_TSC_2023_3336846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjzsH0id_eh-HEOoVigIpjmHyXYi0ZjIblH015vSHjy9A-88A_MwditgIQT4-21ZLCRItVBKGafNGZtJZWUGEvQ5mwmvfCaU1ZfsKqU3ACOd8zOWlxS_KPI1_mLc8ZcuvfP8GyMNlBKv0lTlfT8G3HfjwLuBV7HBISsD9sRXu1dK1-yixT7RzSnnrHpYbYt1tnl-fCryTRaksPuMjG9xBzagVrYRFHxrl6idbsBAQ8KEaWpoCYiGpCXdAiylkR6dcd6RmjM43g1xTClSW3_G7gPjTy2gPiioJwX1QUF9UjAhd0ekI6J_62r63Rn1B-tRVzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</creator><creatorcontrib>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</creatorcontrib><description>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2023.3336846</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>edge computing ; edge user allocation ; Hazards ; Planning ; Public safety ; Real-time systems ; Resource management ; server hazard risk ; Servers ; Spatial databases ; Usability</subject><ispartof>IEEE transactions on services computing, 2024-09, Vol.17 (5), p.2862-2875</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</cites><orcidid>0000-0002-0640-8520 ; 0000-0002-2332-5428 ; 0000-0003-0536-7226 ; 0000-0002-0092-9173 ; 0000-0003-1480-7561 ; 0000-0001-5071-9628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10328886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10328886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Ensheng</creatorcontrib><creatorcontrib>Zhang, Gaofeng</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><creatorcontrib>Wu, Wenming</creatorcontrib><creatorcontrib>Xu, Benzhu</creatorcontrib><creatorcontrib>Zheng, Liping</creatorcontrib><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</description><subject>edge computing</subject><subject>edge user allocation</subject><subject>Hazards</subject><subject>Planning</subject><subject>Public safety</subject><subject>Real-time systems</subject><subject>Resource management</subject><subject>server hazard risk</subject><subject>Servers</subject><subject>Spatial databases</subject><subject>Usability</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjzsH0id_eh-HEOoVigIpjmHyXYi0ZjIblH015vSHjy9A-88A_MwditgIQT4-21ZLCRItVBKGafNGZtJZWUGEvQ5mwmvfCaU1ZfsKqU3ACOd8zOWlxS_KPI1_mLc8ZcuvfP8GyMNlBKv0lTlfT8G3HfjwLuBV7HBISsD9sRXu1dK1-yixT7RzSnnrHpYbYt1tnl-fCryTRaksPuMjG9xBzagVrYRFHxrl6idbsBAQ8KEaWpoCYiGpCXdAiylkR6dcd6RmjM43g1xTClSW3_G7gPjTy2gPiioJwX1QUF9UjAhd0ekI6J_62r63Rn1B-tRVzA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Ensheng</creator><creator>Zhang, Gaofeng</creator><creator>Xu, Liqiang</creator><creator>Wu, Wenming</creator><creator>Xu, Benzhu</creator><creator>Zheng, Liping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0640-8520</orcidid><orcidid>https://orcid.org/0000-0002-2332-5428</orcidid><orcidid>https://orcid.org/0000-0003-0536-7226</orcidid><orcidid>https://orcid.org/0000-0002-0092-9173</orcidid><orcidid>https://orcid.org/0000-0003-1480-7561</orcidid><orcidid>https://orcid.org/0000-0001-5071-9628</orcidid></search><sort><creationdate>20240901</creationdate><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><author>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>edge computing</topic><topic>edge user allocation</topic><topic>Hazards</topic><topic>Planning</topic><topic>Public safety</topic><topic>Real-time systems</topic><topic>Resource management</topic><topic>server hazard risk</topic><topic>Servers</topic><topic>Spatial databases</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ensheng</creatorcontrib><creatorcontrib>Zhang, Gaofeng</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><creatorcontrib>Wu, Wenming</creatorcontrib><creatorcontrib>Xu, Benzhu</creatorcontrib><creatorcontrib>Zheng, Liping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Ensheng</au><au>Zhang, Gaofeng</au><au>Xu, Liqiang</au><au>Wu, Wenming</au><au>Xu, Benzhu</au><au>Zheng, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>2862</spage><epage>2875</epage><pages>2862-2875</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2023.3336846</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0640-8520</orcidid><orcidid>https://orcid.org/0000-0002-2332-5428</orcidid><orcidid>https://orcid.org/0000-0003-0536-7226</orcidid><orcidid>https://orcid.org/0000-0002-0092-9173</orcidid><orcidid>https://orcid.org/0000-0003-1480-7561</orcidid><orcidid>https://orcid.org/0000-0001-5071-9628</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2024-09, Vol.17 (5), p.2862-2875 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2023_3336846 |
source | IEEE Electronic Library (IEL) |
subjects | edge computing edge user allocation Hazards Planning Public safety Real-time systems Resource management server hazard risk Servers Spatial databases Usability |
title | Server Hazard Risk Awareness User Allocation in Urban-Scale Edges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Server%20Hazard%20Risk%20Awareness%20User%20Allocation%20in%20Urban-Scale%20Edges&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Liu,%20Ensheng&rft.date=2024-09-01&rft.volume=17&rft.issue=5&rft.spage=2862&rft.epage=2875&rft.pages=2862-2875&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2023.3336846&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2023_3336846%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10328886&rfr_iscdi=true |