Server Hazard Risk Awareness User Allocation in Urban-Scale Edges

Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2024-09, Vol.17 (5), p.2862-2875
Hauptverfasser: Liu, Ensheng, Zhang, Gaofeng, Xu, Liqiang, Wu, Wenming, Xu, Benzhu, Zheng, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2875
container_issue 5
container_start_page 2862
container_title IEEE transactions on services computing
container_volume 17
creator Liu, Ensheng
Zhang, Gaofeng
Xu, Liqiang
Wu, Wenming
Xu, Benzhu
Zheng, Liping
description Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.
doi_str_mv 10.1109/TSC.2023.3336846
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2023_3336846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10328886</ieee_id><sourcerecordid>10_1109_TSC_2023_3336846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjzsH0id_eh-HEOoVigIpjmHyXYi0ZjIblH015vSHjy9A-88A_MwditgIQT4-21ZLCRItVBKGafNGZtJZWUGEvQ5mwmvfCaU1ZfsKqU3ACOd8zOWlxS_KPI1_mLc8ZcuvfP8GyMNlBKv0lTlfT8G3HfjwLuBV7HBISsD9sRXu1dK1-yixT7RzSnnrHpYbYt1tnl-fCryTRaksPuMjG9xBzagVrYRFHxrl6idbsBAQ8KEaWpoCYiGpCXdAiylkR6dcd6RmjM43g1xTClSW3_G7gPjTy2gPiioJwX1QUF9UjAhd0ekI6J_62r63Rn1B-tRVzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</creator><creatorcontrib>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</creatorcontrib><description>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2023.3336846</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>edge computing ; edge user allocation ; Hazards ; Planning ; Public safety ; Real-time systems ; Resource management ; server hazard risk ; Servers ; Spatial databases ; Usability</subject><ispartof>IEEE transactions on services computing, 2024-09, Vol.17 (5), p.2862-2875</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</cites><orcidid>0000-0002-0640-8520 ; 0000-0002-2332-5428 ; 0000-0003-0536-7226 ; 0000-0002-0092-9173 ; 0000-0003-1480-7561 ; 0000-0001-5071-9628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10328886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10328886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Ensheng</creatorcontrib><creatorcontrib>Zhang, Gaofeng</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><creatorcontrib>Wu, Wenming</creatorcontrib><creatorcontrib>Xu, Benzhu</creatorcontrib><creatorcontrib>Zheng, Liping</creatorcontrib><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</description><subject>edge computing</subject><subject>edge user allocation</subject><subject>Hazards</subject><subject>Planning</subject><subject>Public safety</subject><subject>Real-time systems</subject><subject>Resource management</subject><subject>server hazard risk</subject><subject>Servers</subject><subject>Spatial databases</subject><subject>Usability</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjzsH0id_eh-HEOoVigIpjmHyXYi0ZjIblH015vSHjy9A-88A_MwditgIQT4-21ZLCRItVBKGafNGZtJZWUGEvQ5mwmvfCaU1ZfsKqU3ACOd8zOWlxS_KPI1_mLc8ZcuvfP8GyMNlBKv0lTlfT8G3HfjwLuBV7HBISsD9sRXu1dK1-yixT7RzSnnrHpYbYt1tnl-fCryTRaksPuMjG9xBzagVrYRFHxrl6idbsBAQ8KEaWpoCYiGpCXdAiylkR6dcd6RmjM43g1xTClSW3_G7gPjTy2gPiioJwX1QUF9UjAhd0ekI6J_62r63Rn1B-tRVzA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Ensheng</creator><creator>Zhang, Gaofeng</creator><creator>Xu, Liqiang</creator><creator>Wu, Wenming</creator><creator>Xu, Benzhu</creator><creator>Zheng, Liping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0640-8520</orcidid><orcidid>https://orcid.org/0000-0002-2332-5428</orcidid><orcidid>https://orcid.org/0000-0003-0536-7226</orcidid><orcidid>https://orcid.org/0000-0002-0092-9173</orcidid><orcidid>https://orcid.org/0000-0003-1480-7561</orcidid><orcidid>https://orcid.org/0000-0001-5071-9628</orcidid></search><sort><creationdate>20240901</creationdate><title>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</title><author>Liu, Ensheng ; Zhang, Gaofeng ; Xu, Liqiang ; Wu, Wenming ; Xu, Benzhu ; Zheng, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-e69fad07ca437b1ec9f75a484b060be16c4b0be50aa6e27e4f0052629a86898e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>edge computing</topic><topic>edge user allocation</topic><topic>Hazards</topic><topic>Planning</topic><topic>Public safety</topic><topic>Real-time systems</topic><topic>Resource management</topic><topic>server hazard risk</topic><topic>Servers</topic><topic>Spatial databases</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ensheng</creatorcontrib><creatorcontrib>Zhang, Gaofeng</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><creatorcontrib>Wu, Wenming</creatorcontrib><creatorcontrib>Xu, Benzhu</creatorcontrib><creatorcontrib>Zheng, Liping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Ensheng</au><au>Zhang, Gaofeng</au><au>Xu, Liqiang</au><au>Wu, Wenming</au><au>Xu, Benzhu</au><au>Zheng, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Server Hazard Risk Awareness User Allocation in Urban-Scale Edges</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>2862</spage><epage>2875</epage><pages>2862-2875</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Edge computing deploys edges close to end-users to provide highly accessible resources and latency-sensitive services. It is invaluable for urban crowd/hazard management services, e.g., real-time dynamic route planning and hazard monitoring/analysis, etc. However, in such scenarios, various types of urban hazards jeopardize the usability of edge servers. Worsely, these hazards could be integrated, like gas fires caused by urban earthquakes. In this regard, the formulation of usability risks that servers face is intractable due to the complexity, incomplete real-time data and insufficient expert knowledge of these integrated hazards. Therefore, we innovatively define the usability risks as Server Hazard Risk model from the view of the spatial data field by utilizing Information Diffusion technique which can overcome the adverse conditions above. Then we involve it to formulate the Server Hazard Risk User Allocation (SR-UA) problem, and analyze three typical solutions from the perspective of optimality and efficiency, which are the Lexicographic Goal Programming approach (SR-UA-LGP), the Approximation approach (SR-UA-A) and the Particle Swarm Optimization-based approach (SR-UA-PSO). The extensive experiments based on two real-world datasets illustrate the superior performance of our model and solutions.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2023.3336846</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0640-8520</orcidid><orcidid>https://orcid.org/0000-0002-2332-5428</orcidid><orcidid>https://orcid.org/0000-0003-0536-7226</orcidid><orcidid>https://orcid.org/0000-0002-0092-9173</orcidid><orcidid>https://orcid.org/0000-0003-1480-7561</orcidid><orcidid>https://orcid.org/0000-0001-5071-9628</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2024-09, Vol.17 (5), p.2862-2875
issn 1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2023_3336846
source IEEE Electronic Library (IEL)
subjects edge computing
edge user allocation
Hazards
Planning
Public safety
Real-time systems
Resource management
server hazard risk
Servers
Spatial databases
Usability
title Server Hazard Risk Awareness User Allocation in Urban-Scale Edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Server%20Hazard%20Risk%20Awareness%20User%20Allocation%20in%20Urban-Scale%20Edges&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Liu,%20Ensheng&rft.date=2024-09-01&rft.volume=17&rft.issue=5&rft.spage=2862&rft.epage=2875&rft.pages=2862-2875&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2023.3336846&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2023_3336846%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10328886&rfr_iscdi=true