A Latency-Driven Availability Assessment for Multi-Tenant Service Chains

Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2023-03, Vol.16 (2), p.815-829
Hauptverfasser: De Simone, Luigi, Mauro, Mario Di, Natella, Roberto, Postiglione, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 2
container_start_page 815
container_title IEEE transactions on services computing
container_volume 16
creator De Simone, Luigi
Mauro, Mario Di
Natella, Roberto
Postiglione, Fabio
description Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.
doi_str_mv 10.1109/TSC.2022.3183938
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2022_3183938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9799763</ieee_id><sourcerecordid>2797292540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc2bykjbNsVTnhImHzXNI01fM6NqZdIP993ZseHrw8fu-Bz9CHjmbcc70y3pVzoABzATPhRb5FZmAUEAZMHlNJlwLTblQ8pbcxbhhLIM81xOyKJKlHbBzR_oa_AG7pDhY39rKt344JkWMGOMWuyFp-pB87tvB0zV2dgxWGA7eYVL-WN_Fe3LT2Dbiw-VOyff8bV0u6PLr_aMsltSB5gOVWPEaXcVlpViT1Uxw7hTHTNWVdABOpLVOlRBpaiuX8VzmYKVIG1YxKzMlpuT5vLsL_e8e42A2_T5040sDSivQkEo2UuxMudDHGLAxu-C3NhwNZ-bky4y-zMmXufgaK0_nikfEf1wrrVUmxB8NXmVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797292540</pqid></control><display><type>article</type><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><source>IEEE Xplore</source><creator>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</creator><creatorcontrib>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</creatorcontrib><description>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2022.3183938</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Availability ; Chains ; Cloud computing ; Complex systems ; Complexity ; Computational modeling ; container virtualization ; Containers ; IP multimedia subsystem ; IP networks ; Load tests ; Maintenance engineering ; multi-state systems ; Multimedia ; network function virtualization ; Optimization ; Queueing ; queueing model ; redundancy optimization ; reliability ; Software ; Steady-state ; Subsystems ; universal generating function</subject><ispartof>IEEE transactions on services computing, 2023-03, Vol.16 (2), p.815-829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</citedby><cites>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</cites><orcidid>0000-0001-6574-2601 ; 0000-0003-0628-3796 ; 0000-0003-1084-4824 ; 0000-0002-6008-2656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9799763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9799763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Simone, Luigi</creatorcontrib><creatorcontrib>Mauro, Mario Di</creatorcontrib><creatorcontrib>Natella, Roberto</creatorcontrib><creatorcontrib>Postiglione, Fabio</creatorcontrib><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</description><subject>Availability</subject><subject>Chains</subject><subject>Cloud computing</subject><subject>Complex systems</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>container virtualization</subject><subject>Containers</subject><subject>IP multimedia subsystem</subject><subject>IP networks</subject><subject>Load tests</subject><subject>Maintenance engineering</subject><subject>multi-state systems</subject><subject>Multimedia</subject><subject>network function virtualization</subject><subject>Optimization</subject><subject>Queueing</subject><subject>queueing model</subject><subject>redundancy optimization</subject><subject>reliability</subject><subject>Software</subject><subject>Steady-state</subject><subject>Subsystems</subject><subject>universal generating function</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc2bykjbNsVTnhImHzXNI01fM6NqZdIP993ZseHrw8fu-Bz9CHjmbcc70y3pVzoABzATPhRb5FZmAUEAZMHlNJlwLTblQ8pbcxbhhLIM81xOyKJKlHbBzR_oa_AG7pDhY39rKt344JkWMGOMWuyFp-pB87tvB0zV2dgxWGA7eYVL-WN_Fe3LT2Dbiw-VOyff8bV0u6PLr_aMsltSB5gOVWPEaXcVlpViT1Uxw7hTHTNWVdABOpLVOlRBpaiuX8VzmYKVIG1YxKzMlpuT5vLsL_e8e42A2_T5040sDSivQkEo2UuxMudDHGLAxu-C3NhwNZ-bky4y-zMmXufgaK0_nikfEf1wrrVUmxB8NXmVm</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>De Simone, Luigi</creator><creator>Mauro, Mario Di</creator><creator>Natella, Roberto</creator><creator>Postiglione, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6574-2601</orcidid><orcidid>https://orcid.org/0000-0003-0628-3796</orcidid><orcidid>https://orcid.org/0000-0003-1084-4824</orcidid><orcidid>https://orcid.org/0000-0002-6008-2656</orcidid></search><sort><creationdate>20230301</creationdate><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><author>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Availability</topic><topic>Chains</topic><topic>Cloud computing</topic><topic>Complex systems</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>container virtualization</topic><topic>Containers</topic><topic>IP multimedia subsystem</topic><topic>IP networks</topic><topic>Load tests</topic><topic>Maintenance engineering</topic><topic>multi-state systems</topic><topic>Multimedia</topic><topic>network function virtualization</topic><topic>Optimization</topic><topic>Queueing</topic><topic>queueing model</topic><topic>redundancy optimization</topic><topic>reliability</topic><topic>Software</topic><topic>Steady-state</topic><topic>Subsystems</topic><topic>universal generating function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Simone, Luigi</creatorcontrib><creatorcontrib>Mauro, Mario Di</creatorcontrib><creatorcontrib>Natella, Roberto</creatorcontrib><creatorcontrib>Postiglione, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Simone, Luigi</au><au>Mauro, Mario Di</au><au>Natella, Roberto</au><au>Postiglione, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>815</spage><epage>829</epage><pages>815-829</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2022.3183938</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6574-2601</orcidid><orcidid>https://orcid.org/0000-0003-0628-3796</orcidid><orcidid>https://orcid.org/0000-0003-1084-4824</orcidid><orcidid>https://orcid.org/0000-0002-6008-2656</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2023-03, Vol.16 (2), p.815-829
issn 1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2022_3183938
source IEEE Xplore
subjects Availability
Chains
Cloud computing
Complex systems
Complexity
Computational modeling
container virtualization
Containers
IP multimedia subsystem
IP networks
Load tests
Maintenance engineering
multi-state systems
Multimedia
network function virtualization
Optimization
Queueing
queueing model
redundancy optimization
reliability
Software
Steady-state
Subsystems
universal generating function
title A Latency-Driven Availability Assessment for Multi-Tenant Service Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Latency-Driven%20Availability%20Assessment%20for%20Multi-Tenant%20Service%20Chains&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=De%20Simone,%20Luigi&rft.date=2023-03-01&rft.volume=16&rft.issue=2&rft.spage=815&rft.epage=829&rft.pages=815-829&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2022.3183938&rft_dat=%3Cproquest_RIE%3E2797292540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797292540&rft_id=info:pmid/&rft_ieee_id=9799763&rfr_iscdi=true