A Latency-Driven Availability Assessment for Multi-Tenant Service Chains
Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2023-03, Vol.16 (2), p.815-829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 2 |
container_start_page | 815 |
container_title | IEEE transactions on services computing |
container_volume | 16 |
creator | De Simone, Luigi Mauro, Mario Di Natella, Roberto Postiglione, Fabio |
description | Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests. |
doi_str_mv | 10.1109/TSC.2022.3183938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2022_3183938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9799763</ieee_id><sourcerecordid>2797292540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc2bykjbNsVTnhImHzXNI01fM6NqZdIP993ZseHrw8fu-Bz9CHjmbcc70y3pVzoABzATPhRb5FZmAUEAZMHlNJlwLTblQ8pbcxbhhLIM81xOyKJKlHbBzR_oa_AG7pDhY39rKt344JkWMGOMWuyFp-pB87tvB0zV2dgxWGA7eYVL-WN_Fe3LT2Dbiw-VOyff8bV0u6PLr_aMsltSB5gOVWPEaXcVlpViT1Uxw7hTHTNWVdABOpLVOlRBpaiuX8VzmYKVIG1YxKzMlpuT5vLsL_e8e42A2_T5040sDSivQkEo2UuxMudDHGLAxu-C3NhwNZ-bky4y-zMmXufgaK0_nikfEf1wrrVUmxB8NXmVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797292540</pqid></control><display><type>article</type><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><source>IEEE Xplore</source><creator>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</creator><creatorcontrib>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</creatorcontrib><description>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2022.3183938</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Availability ; Chains ; Cloud computing ; Complex systems ; Complexity ; Computational modeling ; container virtualization ; Containers ; IP multimedia subsystem ; IP networks ; Load tests ; Maintenance engineering ; multi-state systems ; Multimedia ; network function virtualization ; Optimization ; Queueing ; queueing model ; redundancy optimization ; reliability ; Software ; Steady-state ; Subsystems ; universal generating function</subject><ispartof>IEEE transactions on services computing, 2023-03, Vol.16 (2), p.815-829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</citedby><cites>FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</cites><orcidid>0000-0001-6574-2601 ; 0000-0003-0628-3796 ; 0000-0003-1084-4824 ; 0000-0002-6008-2656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9799763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9799763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Simone, Luigi</creatorcontrib><creatorcontrib>Mauro, Mario Di</creatorcontrib><creatorcontrib>Natella, Roberto</creatorcontrib><creatorcontrib>Postiglione, Fabio</creatorcontrib><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</description><subject>Availability</subject><subject>Chains</subject><subject>Cloud computing</subject><subject>Complex systems</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>container virtualization</subject><subject>Containers</subject><subject>IP multimedia subsystem</subject><subject>IP networks</subject><subject>Load tests</subject><subject>Maintenance engineering</subject><subject>multi-state systems</subject><subject>Multimedia</subject><subject>network function virtualization</subject><subject>Optimization</subject><subject>Queueing</subject><subject>queueing model</subject><subject>redundancy optimization</subject><subject>reliability</subject><subject>Software</subject><subject>Steady-state</subject><subject>Subsystems</subject><subject>universal generating function</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc2bykjbNsVTnhImHzXNI01fM6NqZdIP993ZseHrw8fu-Bz9CHjmbcc70y3pVzoABzATPhRb5FZmAUEAZMHlNJlwLTblQ8pbcxbhhLIM81xOyKJKlHbBzR_oa_AG7pDhY39rKt344JkWMGOMWuyFp-pB87tvB0zV2dgxWGA7eYVL-WN_Fe3LT2Dbiw-VOyff8bV0u6PLr_aMsltSB5gOVWPEaXcVlpViT1Uxw7hTHTNWVdABOpLVOlRBpaiuX8VzmYKVIG1YxKzMlpuT5vLsL_e8e42A2_T5040sDSivQkEo2UuxMudDHGLAxu-C3NhwNZ-bky4y-zMmXufgaK0_nikfEf1wrrVUmxB8NXmVm</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>De Simone, Luigi</creator><creator>Mauro, Mario Di</creator><creator>Natella, Roberto</creator><creator>Postiglione, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6574-2601</orcidid><orcidid>https://orcid.org/0000-0003-0628-3796</orcidid><orcidid>https://orcid.org/0000-0003-1084-4824</orcidid><orcidid>https://orcid.org/0000-0002-6008-2656</orcidid></search><sort><creationdate>20230301</creationdate><title>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</title><author>De Simone, Luigi ; Mauro, Mario Di ; Natella, Roberto ; Postiglione, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4eb1decb14b70f6d0311c71e67db4c22c35d9573355abc618482a435f0b0a4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Availability</topic><topic>Chains</topic><topic>Cloud computing</topic><topic>Complex systems</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>container virtualization</topic><topic>Containers</topic><topic>IP multimedia subsystem</topic><topic>IP networks</topic><topic>Load tests</topic><topic>Maintenance engineering</topic><topic>multi-state systems</topic><topic>Multimedia</topic><topic>network function virtualization</topic><topic>Optimization</topic><topic>Queueing</topic><topic>queueing model</topic><topic>redundancy optimization</topic><topic>reliability</topic><topic>Software</topic><topic>Steady-state</topic><topic>Subsystems</topic><topic>universal generating function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Simone, Luigi</creatorcontrib><creatorcontrib>Mauro, Mario Di</creatorcontrib><creatorcontrib>Natella, Roberto</creatorcontrib><creatorcontrib>Postiglione, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Simone, Luigi</au><au>Mauro, Mario Di</au><au>Natella, Roberto</au><au>Postiglione, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Latency-Driven Availability Assessment for Multi-Tenant Service Chains</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>815</spage><epage>829</epage><pages>815-829</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2022.3183938</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6574-2601</orcidid><orcidid>https://orcid.org/0000-0003-0628-3796</orcidid><orcidid>https://orcid.org/0000-0003-1084-4824</orcidid><orcidid>https://orcid.org/0000-0002-6008-2656</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2023-03, Vol.16 (2), p.815-829 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2022_3183938 |
source | IEEE Xplore |
subjects | Availability Chains Cloud computing Complex systems Complexity Computational modeling container virtualization Containers IP multimedia subsystem IP networks Load tests Maintenance engineering multi-state systems Multimedia network function virtualization Optimization Queueing queueing model redundancy optimization reliability Software Steady-state Subsystems universal generating function |
title | A Latency-Driven Availability Assessment for Multi-Tenant Service Chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Latency-Driven%20Availability%20Assessment%20for%20Multi-Tenant%20Service%20Chains&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=De%20Simone,%20Luigi&rft.date=2023-03-01&rft.volume=16&rft.issue=2&rft.spage=815&rft.epage=829&rft.pages=815-829&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2022.3183938&rft_dat=%3Cproquest_RIE%3E2797292540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797292540&rft_id=info:pmid/&rft_ieee_id=9799763&rfr_iscdi=true |