Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases
Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowle...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2022-09, Vol.15 (5), p.2780-2794 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2794 |
---|---|
container_issue | 5 |
container_start_page | 2780 |
container_title | IEEE transactions on services computing |
container_volume | 15 |
creator | Muramudalige, Shashika R. Hung, Benjamin W. K. Jayasumana, Anura P. Ray, Indrakshi Klausen, Jytte |
description | Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains. |
doi_str_mv | 10.1109/TSC.2021.3073145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2021_3073145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405409</ieee_id><sourcerecordid>2722546317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC56353DRHaWstVBSt5zCbnW23aLYmadF_75YW8TRzeN53hoeQa0YHjFFzt3gbDTjlbCCoFkyqE9JjRpicCS1P_-3n5CLGNaUFHw5Nj7xO_Aq8a_wym_kdxtQsITU7zF4gJQw-G2NCl5rWZ7sGOga_waXsCZJb7UPgq2waYLPKxpCghIjxkpzV8BHx6jj75P1hshg95vPn6Wx0P88dlzLlrqJIuSulFEpVrmaoGMia13qoRVkVRhRK1JVGh8xQySrplFRaa2BlgdSJPrk99G5C-7XtXrfrdht8d9JyzbmShWC6o-iBcqGNMWBtN6H5hPBjGbV7c7YzZ_fm7NFcF7k5RBpE_MONpEpSI34BXkxpmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722546317</pqid></control><display><type>article</type><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><source>IEEE Explore</source><creator>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</creator><creatorcontrib>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</creatorcontrib><description>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2021.3073145</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Crime ; Data mining ; Datasets ; graph databases ; Graph matching ; graph pattern matching ; Graphs ; inexact matching ; investigative graph search ; Knowledge representation ; Libraries ; Mental health ; National security ; Pattern matching ; Social networking (online) ; Social networks ; Task analysis ; Terrorism</subject><ispartof>IEEE transactions on services computing, 2022-09, Vol.15 (5), p.2780-2794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</cites><orcidid>0000-0002-3323-2591 ; 0000-0002-0714-7676 ; 0000-0002-1052-7987 ; 0000-0002-8335-655X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muramudalige, Shashika R.</creatorcontrib><creatorcontrib>Hung, Benjamin W. K.</creatorcontrib><creatorcontrib>Jayasumana, Anura P.</creatorcontrib><creatorcontrib>Ray, Indrakshi</creatorcontrib><creatorcontrib>Klausen, Jytte</creatorcontrib><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</description><subject>Crime</subject><subject>Data mining</subject><subject>Datasets</subject><subject>graph databases</subject><subject>Graph matching</subject><subject>graph pattern matching</subject><subject>Graphs</subject><subject>inexact matching</subject><subject>investigative graph search</subject><subject>Knowledge representation</subject><subject>Libraries</subject><subject>Mental health</subject><subject>National security</subject><subject>Pattern matching</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Terrorism</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wcuC56353DRHaWstVBSt5zCbnW23aLYmadF_75YW8TRzeN53hoeQa0YHjFFzt3gbDTjlbCCoFkyqE9JjRpicCS1P_-3n5CLGNaUFHw5Nj7xO_Aq8a_wym_kdxtQsITU7zF4gJQw-G2NCl5rWZ7sGOga_waXsCZJb7UPgq2waYLPKxpCghIjxkpzV8BHx6jj75P1hshg95vPn6Wx0P88dlzLlrqJIuSulFEpVrmaoGMia13qoRVkVRhRK1JVGh8xQySrplFRaa2BlgdSJPrk99G5C-7XtXrfrdht8d9JyzbmShWC6o-iBcqGNMWBtN6H5hPBjGbV7c7YzZ_fm7NFcF7k5RBpE_MONpEpSI34BXkxpmA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Muramudalige, Shashika R.</creator><creator>Hung, Benjamin W. K.</creator><creator>Jayasumana, Anura P.</creator><creator>Ray, Indrakshi</creator><creator>Klausen, Jytte</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3323-2591</orcidid><orcidid>https://orcid.org/0000-0002-0714-7676</orcidid><orcidid>https://orcid.org/0000-0002-1052-7987</orcidid><orcidid>https://orcid.org/0000-0002-8335-655X</orcidid></search><sort><creationdate>20220901</creationdate><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><author>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crime</topic><topic>Data mining</topic><topic>Datasets</topic><topic>graph databases</topic><topic>Graph matching</topic><topic>graph pattern matching</topic><topic>Graphs</topic><topic>inexact matching</topic><topic>investigative graph search</topic><topic>Knowledge representation</topic><topic>Libraries</topic><topic>Mental health</topic><topic>National security</topic><topic>Pattern matching</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Terrorism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muramudalige, Shashika R.</creatorcontrib><creatorcontrib>Hung, Benjamin W. K.</creatorcontrib><creatorcontrib>Jayasumana, Anura P.</creatorcontrib><creatorcontrib>Ray, Indrakshi</creatorcontrib><creatorcontrib>Klausen, Jytte</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muramudalige, Shashika R.</au><au>Hung, Benjamin W. K.</au><au>Jayasumana, Anura P.</au><au>Ray, Indrakshi</au><au>Klausen, Jytte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>2780</spage><epage>2794</epage><pages>2780-2794</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2021.3073145</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3323-2591</orcidid><orcidid>https://orcid.org/0000-0002-0714-7676</orcidid><orcidid>https://orcid.org/0000-0002-1052-7987</orcidid><orcidid>https://orcid.org/0000-0002-8335-655X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2022-09, Vol.15 (5), p.2780-2794 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2021_3073145 |
source | IEEE Explore |
subjects | Crime Data mining Datasets graph databases Graph matching graph pattern matching Graphs inexact matching investigative graph search Knowledge representation Libraries Mental health National security Pattern matching Social networking (online) Social networks Task analysis Terrorism |
title | Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Investigative%20Pattern%20Detection%20via%20Inexact%20Matching%20and%20Graph%20Databases&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Muramudalige,%20Shashika%20R.&rft.date=2022-09-01&rft.volume=15&rft.issue=5&rft.spage=2780&rft.epage=2794&rft.pages=2780-2794&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2021.3073145&rft_dat=%3Cproquest_RIE%3E2722546317%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722546317&rft_id=info:pmid/&rft_ieee_id=9405409&rfr_iscdi=true |