Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases

Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2022-09, Vol.15 (5), p.2780-2794
Hauptverfasser: Muramudalige, Shashika R., Hung, Benjamin W. K., Jayasumana, Anura P., Ray, Indrakshi, Klausen, Jytte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2794
container_issue 5
container_start_page 2780
container_title IEEE transactions on services computing
container_volume 15
creator Muramudalige, Shashika R.
Hung, Benjamin W. K.
Jayasumana, Anura P.
Ray, Indrakshi
Klausen, Jytte
description Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.
doi_str_mv 10.1109/TSC.2021.3073145
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2021_3073145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405409</ieee_id><sourcerecordid>2722546317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC56353DRHaWstVBSt5zCbnW23aLYmadF_75YW8TRzeN53hoeQa0YHjFFzt3gbDTjlbCCoFkyqE9JjRpicCS1P_-3n5CLGNaUFHw5Nj7xO_Aq8a_wym_kdxtQsITU7zF4gJQw-G2NCl5rWZ7sGOga_waXsCZJb7UPgq2waYLPKxpCghIjxkpzV8BHx6jj75P1hshg95vPn6Wx0P88dlzLlrqJIuSulFEpVrmaoGMia13qoRVkVRhRK1JVGh8xQySrplFRaa2BlgdSJPrk99G5C-7XtXrfrdht8d9JyzbmShWC6o-iBcqGNMWBtN6H5hPBjGbV7c7YzZ_fm7NFcF7k5RBpE_MONpEpSI34BXkxpmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722546317</pqid></control><display><type>article</type><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><source>IEEE Explore</source><creator>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</creator><creatorcontrib>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</creatorcontrib><description>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2021.3073145</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Crime ; Data mining ; Datasets ; graph databases ; Graph matching ; graph pattern matching ; Graphs ; inexact matching ; investigative graph search ; Knowledge representation ; Libraries ; Mental health ; National security ; Pattern matching ; Social networking (online) ; Social networks ; Task analysis ; Terrorism</subject><ispartof>IEEE transactions on services computing, 2022-09, Vol.15 (5), p.2780-2794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</cites><orcidid>0000-0002-3323-2591 ; 0000-0002-0714-7676 ; 0000-0002-1052-7987 ; 0000-0002-8335-655X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muramudalige, Shashika R.</creatorcontrib><creatorcontrib>Hung, Benjamin W. K.</creatorcontrib><creatorcontrib>Jayasumana, Anura P.</creatorcontrib><creatorcontrib>Ray, Indrakshi</creatorcontrib><creatorcontrib>Klausen, Jytte</creatorcontrib><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</description><subject>Crime</subject><subject>Data mining</subject><subject>Datasets</subject><subject>graph databases</subject><subject>Graph matching</subject><subject>graph pattern matching</subject><subject>Graphs</subject><subject>inexact matching</subject><subject>investigative graph search</subject><subject>Knowledge representation</subject><subject>Libraries</subject><subject>Mental health</subject><subject>National security</subject><subject>Pattern matching</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Terrorism</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wcuC56353DRHaWstVBSt5zCbnW23aLYmadF_75YW8TRzeN53hoeQa0YHjFFzt3gbDTjlbCCoFkyqE9JjRpicCS1P_-3n5CLGNaUFHw5Nj7xO_Aq8a_wym_kdxtQsITU7zF4gJQw-G2NCl5rWZ7sGOga_waXsCZJb7UPgq2waYLPKxpCghIjxkpzV8BHx6jj75P1hshg95vPn6Wx0P88dlzLlrqJIuSulFEpVrmaoGMia13qoRVkVRhRK1JVGh8xQySrplFRaa2BlgdSJPrk99G5C-7XtXrfrdht8d9JyzbmShWC6o-iBcqGNMWBtN6H5hPBjGbV7c7YzZ_fm7NFcF7k5RBpE_MONpEpSI34BXkxpmA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Muramudalige, Shashika R.</creator><creator>Hung, Benjamin W. K.</creator><creator>Jayasumana, Anura P.</creator><creator>Ray, Indrakshi</creator><creator>Klausen, Jytte</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3323-2591</orcidid><orcidid>https://orcid.org/0000-0002-0714-7676</orcidid><orcidid>https://orcid.org/0000-0002-1052-7987</orcidid><orcidid>https://orcid.org/0000-0002-8335-655X</orcidid></search><sort><creationdate>20220901</creationdate><title>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</title><author>Muramudalige, Shashika R. ; Hung, Benjamin W. K. ; Jayasumana, Anura P. ; Ray, Indrakshi ; Klausen, Jytte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cd0e02cb44355dcf1e51a4f2f7873bd693653fd7ece19041d4c545777a1b6e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crime</topic><topic>Data mining</topic><topic>Datasets</topic><topic>graph databases</topic><topic>Graph matching</topic><topic>graph pattern matching</topic><topic>Graphs</topic><topic>inexact matching</topic><topic>investigative graph search</topic><topic>Knowledge representation</topic><topic>Libraries</topic><topic>Mental health</topic><topic>National security</topic><topic>Pattern matching</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Terrorism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muramudalige, Shashika R.</creatorcontrib><creatorcontrib>Hung, Benjamin W. K.</creatorcontrib><creatorcontrib>Jayasumana, Anura P.</creatorcontrib><creatorcontrib>Ray, Indrakshi</creatorcontrib><creatorcontrib>Klausen, Jytte</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muramudalige, Shashika R.</au><au>Hung, Benjamin W. K.</au><au>Jayasumana, Anura P.</au><au>Ray, Indrakshi</au><au>Klausen, Jytte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>2780</spage><epage>2794</epage><pages>2780-2794</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Tracking individuals or groups based on their hidden and/or emergent behaviors is an indispensable task in homeland security, mental health evaluation, and consumer analytics. On-line and off-line communication patterns, behavior profiles and social relationships form complex dynamic evolving knowledge graphs. Investigative search involves capturing and mining such large-scale knowledge graphs for emergent profiles of interest. While graph databases facilitate efficient and scalable operations on complex heterogeneous graphs, dealing with incomplete, missing and/or inconsistent information and need for adaptive querying pose major challenges. We address these by proposing an inexact graph pattern matching method, which is implemented in a graph database with a scoring mechanism that helps identify hidden behavioral patterns. PINGS ( P rocedures for IN vestigative G raph S earch), a graph database library of procedures for investigative graph search is presented. Results presented demonstrate the capability of detecting individuals/groups meeting query criteria as well as the iterative query performance in graph databases. We evaluate our approach on three datasets: a synthetically generated radicalization dataset, a publicly available patient's ICU hospitalization stays dataset, and a crime dataset. These varied datasets demonstrate the wide-range applicability and the enhanced effectiveness of observing suspicious or latent trends in investigative domains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2021.3073145</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3323-2591</orcidid><orcidid>https://orcid.org/0000-0002-0714-7676</orcidid><orcidid>https://orcid.org/0000-0002-1052-7987</orcidid><orcidid>https://orcid.org/0000-0002-8335-655X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2022-09, Vol.15 (5), p.2780-2794
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2021_3073145
source IEEE Explore
subjects Crime
Data mining
Datasets
graph databases
Graph matching
graph pattern matching
Graphs
inexact matching
investigative graph search
Knowledge representation
Libraries
Mental health
National security
Pattern matching
Social networking (online)
Social networks
Task analysis
Terrorism
title Enhancing Investigative Pattern Detection via Inexact Matching and Graph Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Investigative%20Pattern%20Detection%20via%20Inexact%20Matching%20and%20Graph%20Databases&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Muramudalige,%20Shashika%20R.&rft.date=2022-09-01&rft.volume=15&rft.issue=5&rft.spage=2780&rft.epage=2794&rft.pages=2780-2794&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2021.3073145&rft_dat=%3Cproquest_RIE%3E2722546317%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722546317&rft_id=info:pmid/&rft_ieee_id=9405409&rfr_iscdi=true