Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments

Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple strea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2022-03, Vol.15 (2), p.860-875
Hauptverfasser: Barika, Mutaz, Garg, Saurabh, Chan, Andrew, Calheiros, Rodrigo N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 2
container_start_page 860
container_title IEEE transactions on services computing
container_volume 15
creator Barika, Mutaz
Garg, Saurabh
Chan, Andrew
Calheiros, Rodrigo N.
description Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.
doi_str_mv 10.1109/TSC.2019.2963382
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2019_2963382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8946723</ieee_id><sourcerecordid>2648286099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</originalsourceid><addsrcrecordid>eNpNkNtLwzAUh4MoOKfvgi8Bn1tz6dLkcYx6gYkPm_gYujTZMtumJqmX_96WDfHpHM75fufAB8A1RinGSNytV4uUICxSIhilnJyACRZUJJjm2em__hxchLBHiBHOxQTsVmqnq7627RbO663zNu6aAI3zsDDGKqvbCItvrfpoXQudgavoddnAN-ffTe2-4LzraqvKcR2gbeFzX0eratdXsGg_rXdtM9wIl-DMlHXQV8c6Ba_3xXrxmCxfHp4W82WiKKUx4dgQhgxWiFRVRXI2I5RtVI7ykimMaYlmiAwDMoAbUWU4M7nQlWCIKzV4oFNwe7jbeffR6xDl3vW-HV5KwjJOOENipNCBUt6F4LWRnbdN6X8kRnL0KQefcvQpjz6HyM0hYrXWfzgXGcsJpb8XKXI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648286099</pqid></control><display><type>article</type><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</creator><creatorcontrib>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</creatorcontrib><description>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2019.2963382</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Cloud computing ; Data processing ; Data transmission ; Decision analysis ; Decision making ; genetic algorithm ; Genetic algorithms ; greedy algorithm ; Mathematical analysis ; Processor scheduling ; Quality of service ; Real-time systems ; Resource allocation ; Resource management ; Resource scheduling ; scheduling ; stream workflow ; Workflow software</subject><ispartof>IEEE transactions on services computing, 2022-03, Vol.15 (2), p.860-875</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</citedby><cites>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</cites><orcidid>0000-0003-0042-8448 ; 0000-0001-8719-284X ; 0000-0001-7435-2445 ; 0000-0002-9146-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8946723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8946723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barika, Mutaz</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Calheiros, Rodrigo N.</creatorcontrib><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</description><subject>Big Data</subject><subject>Cloud computing</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>greedy algorithm</subject><subject>Mathematical analysis</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Real-time systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>scheduling</subject><subject>stream workflow</subject><subject>Workflow software</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtLwzAUh4MoOKfvgi8Bn1tz6dLkcYx6gYkPm_gYujTZMtumJqmX_96WDfHpHM75fufAB8A1RinGSNytV4uUICxSIhilnJyACRZUJJjm2em__hxchLBHiBHOxQTsVmqnq7627RbO663zNu6aAI3zsDDGKqvbCItvrfpoXQudgavoddnAN-ffTe2-4LzraqvKcR2gbeFzX0eratdXsGg_rXdtM9wIl-DMlHXQV8c6Ba_3xXrxmCxfHp4W82WiKKUx4dgQhgxWiFRVRXI2I5RtVI7ykimMaYlmiAwDMoAbUWU4M7nQlWCIKzV4oFNwe7jbeffR6xDl3vW-HV5KwjJOOENipNCBUt6F4LWRnbdN6X8kRnL0KQefcvQpjz6HyM0hYrXWfzgXGcsJpb8XKXI2</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Barika, Mutaz</creator><creator>Garg, Saurabh</creator><creator>Chan, Andrew</creator><creator>Calheiros, Rodrigo N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0042-8448</orcidid><orcidid>https://orcid.org/0000-0001-8719-284X</orcidid><orcidid>https://orcid.org/0000-0001-7435-2445</orcidid><orcidid>https://orcid.org/0000-0002-9146-2459</orcidid></search><sort><creationdate>20220301</creationdate><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><author>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Cloud computing</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>greedy algorithm</topic><topic>Mathematical analysis</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Real-time systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>scheduling</topic><topic>stream workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barika, Mutaz</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Calheiros, Rodrigo N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barika, Mutaz</au><au>Garg, Saurabh</au><au>Chan, Andrew</au><au>Calheiros, Rodrigo N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>860</spage><epage>875</epage><pages>860-875</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2019.2963382</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0042-8448</orcidid><orcidid>https://orcid.org/0000-0001-8719-284X</orcidid><orcidid>https://orcid.org/0000-0001-7435-2445</orcidid><orcidid>https://orcid.org/0000-0002-9146-2459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2022-03, Vol.15 (2), p.860-875
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2019_2963382
source IEEE Electronic Library (IEL)
subjects Big Data
Cloud computing
Data processing
Data transmission
Decision analysis
Decision making
genetic algorithm
Genetic algorithms
greedy algorithm
Mathematical analysis
Processor scheduling
Quality of service
Real-time systems
Resource allocation
Resource management
Resource scheduling
scheduling
stream workflow
Workflow software
title Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Algorithms%20for%20Efficient%20Execution%20of%20Stream%20Workflow%20Applications%20in%20Multicloud%20Environments&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Barika,%20Mutaz&rft.date=2022-03-01&rft.volume=15&rft.issue=2&rft.spage=860&rft.epage=875&rft.pages=860-875&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2019.2963382&rft_dat=%3Cproquest_RIE%3E2648286099%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648286099&rft_id=info:pmid/&rft_ieee_id=8946723&rfr_iscdi=true