Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments
Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple strea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2022-03, Vol.15 (2), p.860-875 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 875 |
---|---|
container_issue | 2 |
container_start_page | 860 |
container_title | IEEE transactions on services computing |
container_volume | 15 |
creator | Barika, Mutaz Garg, Saurabh Chan, Andrew Calheiros, Rodrigo N. |
description | Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments. |
doi_str_mv | 10.1109/TSC.2019.2963382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2019_2963382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8946723</ieee_id><sourcerecordid>2648286099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</originalsourceid><addsrcrecordid>eNpNkNtLwzAUh4MoOKfvgi8Bn1tz6dLkcYx6gYkPm_gYujTZMtumJqmX_96WDfHpHM75fufAB8A1RinGSNytV4uUICxSIhilnJyACRZUJJjm2em__hxchLBHiBHOxQTsVmqnq7627RbO663zNu6aAI3zsDDGKqvbCItvrfpoXQudgavoddnAN-ffTe2-4LzraqvKcR2gbeFzX0eratdXsGg_rXdtM9wIl-DMlHXQV8c6Ba_3xXrxmCxfHp4W82WiKKUx4dgQhgxWiFRVRXI2I5RtVI7ykimMaYlmiAwDMoAbUWU4M7nQlWCIKzV4oFNwe7jbeffR6xDl3vW-HV5KwjJOOENipNCBUt6F4LWRnbdN6X8kRnL0KQefcvQpjz6HyM0hYrXWfzgXGcsJpb8XKXI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648286099</pqid></control><display><type>article</type><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</creator><creatorcontrib>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</creatorcontrib><description>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2019.2963382</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Cloud computing ; Data processing ; Data transmission ; Decision analysis ; Decision making ; genetic algorithm ; Genetic algorithms ; greedy algorithm ; Mathematical analysis ; Processor scheduling ; Quality of service ; Real-time systems ; Resource allocation ; Resource management ; Resource scheduling ; scheduling ; stream workflow ; Workflow software</subject><ispartof>IEEE transactions on services computing, 2022-03, Vol.15 (2), p.860-875</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</citedby><cites>FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</cites><orcidid>0000-0003-0042-8448 ; 0000-0001-8719-284X ; 0000-0001-7435-2445 ; 0000-0002-9146-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8946723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8946723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barika, Mutaz</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Calheiros, Rodrigo N.</creatorcontrib><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</description><subject>Big Data</subject><subject>Cloud computing</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>greedy algorithm</subject><subject>Mathematical analysis</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Real-time systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>scheduling</subject><subject>stream workflow</subject><subject>Workflow software</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtLwzAUh4MoOKfvgi8Bn1tz6dLkcYx6gYkPm_gYujTZMtumJqmX_96WDfHpHM75fufAB8A1RinGSNytV4uUICxSIhilnJyACRZUJJjm2em__hxchLBHiBHOxQTsVmqnq7627RbO663zNu6aAI3zsDDGKqvbCItvrfpoXQudgavoddnAN-ffTe2-4LzraqvKcR2gbeFzX0eratdXsGg_rXdtM9wIl-DMlHXQV8c6Ba_3xXrxmCxfHp4W82WiKKUx4dgQhgxWiFRVRXI2I5RtVI7ykimMaYlmiAwDMoAbUWU4M7nQlWCIKzV4oFNwe7jbeffR6xDl3vW-HV5KwjJOOENipNCBUt6F4LWRnbdN6X8kRnL0KQefcvQpjz6HyM0hYrXWfzgXGcsJpb8XKXI2</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Barika, Mutaz</creator><creator>Garg, Saurabh</creator><creator>Chan, Andrew</creator><creator>Calheiros, Rodrigo N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0042-8448</orcidid><orcidid>https://orcid.org/0000-0001-8719-284X</orcidid><orcidid>https://orcid.org/0000-0001-7435-2445</orcidid><orcidid>https://orcid.org/0000-0002-9146-2459</orcidid></search><sort><creationdate>20220301</creationdate><title>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</title><author>Barika, Mutaz ; Garg, Saurabh ; Chan, Andrew ; Calheiros, Rodrigo N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81f260f1c02ddd2765236bc707a6c113a05026bc281fb9d414f79ed9608cc1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Cloud computing</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>greedy algorithm</topic><topic>Mathematical analysis</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Real-time systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>scheduling</topic><topic>stream workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barika, Mutaz</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Chan, Andrew</creatorcontrib><creatorcontrib>Calheiros, Rodrigo N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barika, Mutaz</au><au>Garg, Saurabh</au><au>Chan, Andrew</au><au>Calheiros, Rodrigo N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>860</spage><epage>875</epage><pages>860-875</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud environments requires advanced scheduling techniques that adhere to end user's requirements in terms of data processing and deadline for decision making. In this article, we propose two multicloud scheduling and resource allocation techniques for efficient execution of stream workflow applications on multicloud environments while adhering to workflow application and user performance requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2019.2963382</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0042-8448</orcidid><orcidid>https://orcid.org/0000-0001-8719-284X</orcidid><orcidid>https://orcid.org/0000-0001-7435-2445</orcidid><orcidid>https://orcid.org/0000-0002-9146-2459</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2022-03, Vol.15 (2), p.860-875 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2019_2963382 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Cloud computing Data processing Data transmission Decision analysis Decision making genetic algorithm Genetic algorithms greedy algorithm Mathematical analysis Processor scheduling Quality of service Real-time systems Resource allocation Resource management Resource scheduling scheduling stream workflow Workflow software |
title | Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in Multicloud Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Algorithms%20for%20Efficient%20Execution%20of%20Stream%20Workflow%20Applications%20in%20Multicloud%20Environments&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Barika,%20Mutaz&rft.date=2022-03-01&rft.volume=15&rft.issue=2&rft.spage=860&rft.epage=875&rft.pages=860-875&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2019.2963382&rft_dat=%3Cproquest_RIE%3E2648286099%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648286099&rft_id=info:pmid/&rft_ieee_id=8946723&rfr_iscdi=true |