Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage

Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamformi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on speech and audio processing 2005-01, Vol.13 (1), p.53-69
Hauptverfasser: Doclo, S., Moonen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 53
container_title IEEE transactions on speech and audio processing
container_volume 13
creator Doclo, S.
Moonen, M.
description Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.
doi_str_mv 10.1109/TSA.2004.834462
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSA_2004_834462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369312</ieee_id><sourcerecordid>28012696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxS1EJWDhzIFLVKlwyuKveO3jaikfEm0PrLhajjMBr0KcepIi_vt6u0hIPXDyWP69eZ55hJwyOmeMmsv1w3LOKZVzLaRUfI8csqrSJReV2M81VaJUaqEOyBHihlKq2UIeks2PqRvDS_ApDs-xh6KPAaFI0Ex-DLEvJgz9U777KWH4A8XNw-NVWTuEpohDVrquaEM3Qtpir2F8LpY_V8UQcRxS9ID_5Di6JzgmX1rXIZy8nzOyvv6-Xt2W979u7lbL-9ILzcbSKMMNpxo0VAuoa2WEdq7WtalpUzVN7Q3lmtKWN5R77SuhF9IbzWvBHVRiRi52bbP_7wlwtC8BPXSd6yFOaA0zRnCjWSbPPyWzC-PKqAx-_Q_cxCn1eQirtRCmUvmTM3K5g_IqERO0dkh5PenNMmq3CdmckN0mZHcJZcW397YOveva5Hof8EOmpNSSysyd7bgAAB_PIpsyLv4CkcyaDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883395669</pqid></control><display><type>article</type><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><source>IEEE Electronic Library (IEL)</source><creator>Doclo, S. ; Moonen, M.</creator><creatorcontrib>Doclo, S. ; Moonen, M.</creatorcontrib><description>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</description><identifier>ISSN: 1063-6676</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-2353</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TSA.2004.834462</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic noise ; Adaptive filters ; Applied sciences ; Array signal processing ; Complexity ; Computational complexity ; Computer simulation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filtration ; Generalized sidelobe canceller ; generalized singular value decomposition (GSVD) ; Information, signal and communications theory ; multichannel Wiener filter ; Noise ; Noise cancellation ; Noise control ; Noise reduction ; optimal filtering ; Optimization ; recursive algorithms ; Signal and communications theory ; Signal processing ; Signal to noise ratio ; Signal, noise ; Speech ; Speech analysis ; Speech enhancement ; Speech processing ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on speech and audio processing, 2005-01, Vol.13 (1), p.53-69</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</citedby><cites>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369312$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369312$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16448404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doclo, S.</creatorcontrib><creatorcontrib>Moonen, M.</creatorcontrib><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</description><subject>Acoustic noise</subject><subject>Adaptive filters</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Generalized sidelobe canceller</subject><subject>generalized singular value decomposition (GSVD)</subject><subject>Information, signal and communications theory</subject><subject>multichannel Wiener filter</subject><subject>Noise</subject><subject>Noise cancellation</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>optimal filtering</subject><subject>Optimization</subject><subject>recursive algorithms</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech analysis</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1063-6676</issn><issn>2329-9290</issn><issn>1558-2353</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1P3DAQxS1EJWDhzIFLVKlwyuKveO3jaikfEm0PrLhajjMBr0KcepIi_vt6u0hIPXDyWP69eZ55hJwyOmeMmsv1w3LOKZVzLaRUfI8csqrSJReV2M81VaJUaqEOyBHihlKq2UIeks2PqRvDS_ApDs-xh6KPAaFI0Ex-DLEvJgz9U777KWH4A8XNw-NVWTuEpohDVrquaEM3Qtpir2F8LpY_V8UQcRxS9ID_5Di6JzgmX1rXIZy8nzOyvv6-Xt2W979u7lbL-9ILzcbSKMMNpxo0VAuoa2WEdq7WtalpUzVN7Q3lmtKWN5R77SuhF9IbzWvBHVRiRi52bbP_7wlwtC8BPXSd6yFOaA0zRnCjWSbPPyWzC-PKqAx-_Q_cxCn1eQirtRCmUvmTM3K5g_IqERO0dkh5PenNMmq3CdmckN0mZHcJZcW397YOveva5Hof8EOmpNSSysyd7bgAAB_PIpsyLv4CkcyaDw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Doclo, S.</creator><creator>Moonen, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><author>Doclo, S. ; Moonen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic noise</topic><topic>Adaptive filters</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Generalized sidelobe canceller</topic><topic>generalized singular value decomposition (GSVD)</topic><topic>Information, signal and communications theory</topic><topic>multichannel Wiener filter</topic><topic>Noise</topic><topic>Noise cancellation</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>optimal filtering</topic><topic>Optimization</topic><topic>recursive algorithms</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech analysis</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doclo, S.</creatorcontrib><creatorcontrib>Moonen, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doclo, S.</au><au>Moonen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>2005-01</date><risdate>2005</risdate><volume>13</volume><issue>1</issue><spage>53</spage><epage>69</epage><pages>53-69</pages><issn>1063-6676</issn><issn>2329-9290</issn><eissn>1558-2353</eissn><eissn>2329-9304</eissn><coden>IESPEJ</coden><abstract>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSA.2004.834462</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 2005-01, Vol.13 (1), p.53-69
issn 1063-6676
2329-9290
1558-2353
2329-9304
language eng
recordid cdi_crossref_primary_10_1109_TSA_2004_834462
source IEEE Electronic Library (IEL)
subjects Acoustic noise
Adaptive filters
Applied sciences
Array signal processing
Complexity
Computational complexity
Computer simulation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Filtration
Generalized sidelobe canceller
generalized singular value decomposition (GSVD)
Information, signal and communications theory
multichannel Wiener filter
Noise
Noise cancellation
Noise control
Noise reduction
optimal filtering
Optimization
recursive algorithms
Signal and communications theory
Signal processing
Signal to noise ratio
Signal, noise
Speech
Speech analysis
Speech enhancement
Speech processing
Studies
Telecommunications and information theory
title Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimicrophone%20noise%20reduction%20using%20recursive%20GSVD-based%20optimal%20filtering%20with%20ANC%20postprocessing%20stage&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Doclo,%20S.&rft.date=2005-01&rft.volume=13&rft.issue=1&rft.spage=53&rft.epage=69&rft.pages=53-69&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/TSA.2004.834462&rft_dat=%3Cproquest_RIE%3E28012696%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883395669&rft_id=info:pmid/&rft_ieee_id=1369312&rfr_iscdi=true