Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage
Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamformi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on speech and audio processing 2005-01, Vol.13 (1), p.53-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | IEEE transactions on speech and audio processing |
container_volume | 13 |
creator | Doclo, S. Moonen, M. |
description | Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion. |
doi_str_mv | 10.1109/TSA.2004.834462 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSA_2004_834462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369312</ieee_id><sourcerecordid>28012696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxS1EJWDhzIFLVKlwyuKveO3jaikfEm0PrLhajjMBr0KcepIi_vt6u0hIPXDyWP69eZ55hJwyOmeMmsv1w3LOKZVzLaRUfI8csqrSJReV2M81VaJUaqEOyBHihlKq2UIeks2PqRvDS_ApDs-xh6KPAaFI0Ex-DLEvJgz9U777KWH4A8XNw-NVWTuEpohDVrquaEM3Qtpir2F8LpY_V8UQcRxS9ID_5Di6JzgmX1rXIZy8nzOyvv6-Xt2W979u7lbL-9ILzcbSKMMNpxo0VAuoa2WEdq7WtalpUzVN7Q3lmtKWN5R77SuhF9IbzWvBHVRiRi52bbP_7wlwtC8BPXSd6yFOaA0zRnCjWSbPPyWzC-PKqAx-_Q_cxCn1eQirtRCmUvmTM3K5g_IqERO0dkh5PenNMmq3CdmckN0mZHcJZcW397YOveva5Hof8EOmpNSSysyd7bgAAB_PIpsyLv4CkcyaDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883395669</pqid></control><display><type>article</type><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><source>IEEE Electronic Library (IEL)</source><creator>Doclo, S. ; Moonen, M.</creator><creatorcontrib>Doclo, S. ; Moonen, M.</creatorcontrib><description>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</description><identifier>ISSN: 1063-6676</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-2353</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TSA.2004.834462</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic noise ; Adaptive filters ; Applied sciences ; Array signal processing ; Complexity ; Computational complexity ; Computer simulation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filtration ; Generalized sidelobe canceller ; generalized singular value decomposition (GSVD) ; Information, signal and communications theory ; multichannel Wiener filter ; Noise ; Noise cancellation ; Noise control ; Noise reduction ; optimal filtering ; Optimization ; recursive algorithms ; Signal and communications theory ; Signal processing ; Signal to noise ratio ; Signal, noise ; Speech ; Speech analysis ; Speech enhancement ; Speech processing ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on speech and audio processing, 2005-01, Vol.13 (1), p.53-69</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</citedby><cites>FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369312$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369312$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16448404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doclo, S.</creatorcontrib><creatorcontrib>Moonen, M.</creatorcontrib><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</description><subject>Acoustic noise</subject><subject>Adaptive filters</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Generalized sidelobe canceller</subject><subject>generalized singular value decomposition (GSVD)</subject><subject>Information, signal and communications theory</subject><subject>multichannel Wiener filter</subject><subject>Noise</subject><subject>Noise cancellation</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>optimal filtering</subject><subject>Optimization</subject><subject>recursive algorithms</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech analysis</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1063-6676</issn><issn>2329-9290</issn><issn>1558-2353</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1P3DAQxS1EJWDhzIFLVKlwyuKveO3jaikfEm0PrLhajjMBr0KcepIi_vt6u0hIPXDyWP69eZ55hJwyOmeMmsv1w3LOKZVzLaRUfI8csqrSJReV2M81VaJUaqEOyBHihlKq2UIeks2PqRvDS_ApDs-xh6KPAaFI0Ex-DLEvJgz9U777KWH4A8XNw-NVWTuEpohDVrquaEM3Qtpir2F8LpY_V8UQcRxS9ID_5Di6JzgmX1rXIZy8nzOyvv6-Xt2W979u7lbL-9ILzcbSKMMNpxo0VAuoa2WEdq7WtalpUzVN7Q3lmtKWN5R77SuhF9IbzWvBHVRiRi52bbP_7wlwtC8BPXSd6yFOaA0zRnCjWSbPPyWzC-PKqAx-_Q_cxCn1eQirtRCmUvmTM3K5g_IqERO0dkh5PenNMmq3CdmckN0mZHcJZcW397YOveva5Hof8EOmpNSSysyd7bgAAB_PIpsyLv4CkcyaDw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Doclo, S.</creator><creator>Moonen, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</title><author>Doclo, S. ; Moonen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-96929208e8e57ebb6938aab8b9b0d5ddbc902800f2d02c8c53874c982b32ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic noise</topic><topic>Adaptive filters</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Generalized sidelobe canceller</topic><topic>generalized singular value decomposition (GSVD)</topic><topic>Information, signal and communications theory</topic><topic>multichannel Wiener filter</topic><topic>Noise</topic><topic>Noise cancellation</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>optimal filtering</topic><topic>Optimization</topic><topic>recursive algorithms</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech analysis</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doclo, S.</creatorcontrib><creatorcontrib>Moonen, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doclo, S.</au><au>Moonen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>2005-01</date><risdate>2005</risdate><volume>13</volume><issue>1</issue><spage>53</spage><epage>69</epage><pages>53-69</pages><issn>1063-6676</issn><issn>2329-9290</issn><eissn>1558-2353</eissn><eissn>2329-9304</eissn><coden>IESPEJ</coden><abstract>Recently, a generalized singular value decomposition (GSVD)-based optimal filtering technique has been proposed for enhancing multimicrophone speech signals degraded by additive colored noise. The GSVD-based optimal filtering technique has a better noise reduction performance than standard beamforming techniques provided that the used filter length is large enough. In this paper, it is shown that the same noise reduction performance can be obtained with shorter filter lengths at a lower computational complexity by incorporating the GSVD-based optimal filtering technique in a generalized sidelobe canceller type structure, i.e., by adding an adaptive noise cancellation (ANC) postprocessing stage. Even when using short filter lengths, the total computational complexity is essentially determined by the calculation of the GSVD of a speech and a noise data matrix. It is shown that the complexity can be significantly reduced by using recursive GSVD-updating algorithms and by using subsampling. Simulations have been performed for various acoustic scenarios (different and multiple noise sources and different reverberation conditions), where both the improvement in signal-to-noise ratio and speech distortion have been analyzed. These simulations show that the GSVD-based optimal filtering technique with an ANC postprocessing stage has a better noise reduction performance than standard fixed and adaptive beamforming techniques while introducing an acceptable amount of speech distortion.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSA.2004.834462</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6676 |
ispartof | IEEE transactions on speech and audio processing, 2005-01, Vol.13 (1), p.53-69 |
issn | 1063-6676 2329-9290 1558-2353 2329-9304 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSA_2004_834462 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic noise Adaptive filters Applied sciences Array signal processing Complexity Computational complexity Computer simulation Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering Filtration Generalized sidelobe canceller generalized singular value decomposition (GSVD) Information, signal and communications theory multichannel Wiener filter Noise Noise cancellation Noise control Noise reduction optimal filtering Optimization recursive algorithms Signal and communications theory Signal processing Signal to noise ratio Signal, noise Speech Speech analysis Speech enhancement Speech processing Studies Telecommunications and information theory |
title | Multimicrophone noise reduction using recursive GSVD-based optimal filtering with ANC postprocessing stage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimicrophone%20noise%20reduction%20using%20recursive%20GSVD-based%20optimal%20filtering%20with%20ANC%20postprocessing%20stage&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Doclo,%20S.&rft.date=2005-01&rft.volume=13&rft.issue=1&rft.spage=53&rft.epage=69&rft.pages=53-69&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/TSA.2004.834462&rft_dat=%3Cproquest_RIE%3E28012696%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883395669&rft_id=info:pmid/&rft_ieee_id=1369312&rfr_iscdi=true |