An Uncertainty-Aware Deep Learning Model for Reliable Detection of Steel Wire Rope Defects

As safety is a top priority in mission-critical engineering applications, uncertainty quantification emerges as a linchpin to the successful deployment of AI models in these high-stakes domains. In this article, we seamlessly encode a simple and principled uncertainty quantification module spectral-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2024-06, Vol.73 (2), p.1187-1201
Hauptverfasser: Yi, Wenting, Chan, Wai Kit, Lee, Hiu Hung, Boles, Steven T., Zhang, Xiaoge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!