Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model
Intermittent faults are common in daily life and industrial manufacture, which have been drawing much attention from both academia and industry. In practice, intermittent faults will pose a great threat to system performance and equipment safety. Because of the randomness and unpredictability of int...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2023-09, Vol.72 (3), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on reliability |
container_volume | 72 |
creator | Lin, Limei Zhou, Shuming Hsieh, Sun-Yuan |
description | Intermittent faults are common in daily life and industrial manufacture, which have been drawing much attention from both academia and industry. In practice, intermittent faults will pose a great threat to system performance and equipment safety. Because of the randomness and unpredictability of intermittent faults, it is a great challenge to diagnose them. The fault diagnosis strategy under system-level diagnostic model plays a very important role in measuring the endogenous network security without prior knowledge, which can significantly enhance the self-diagnosing capability of network. However, as the networks become large-scale and complicated, the fault diagnosis using full syndromes from a system-level diagnostic model seems to reach its bottleneck. In this article, we first determine that the intermittent fault diagnosability of a general r-regular network G under comparison model is (t^{\text{Intermittent}}(G))^{M}=r-2. This results can be directly applied to 18 well-known networks. Then, we propose a reliable neural network enabled intermittent fault diagnosis algorithm RNNIFDCom to solve the problem of fault identification with partial syndromes for a general r-regular network G under comparison model. Finally, we implement our proposed algorithm RNNIFDCom in different networks and analyze its performance under different number of faulty nodes in terms of true positive rate, true negative rate, false positive rate, and false negative rate. The experimental results verify the theoretical results and show the advantage of our proposed algorithm RNNIFDCom. |
doi_str_mv | 10.1109/TR.2022.3199504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2022_3199504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875029</ieee_id><sourcerecordid>2859710954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-77d407895514c8aaa952eafe50973e68b8f219f158337725a0775dc25a12a0803</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnD14CnrfNx8YkR6lWK7VCac8h3Z2VrdukJlnEf29Ki6eZgeedGR6EbikZUUr0eLUcMcLYiFOtBSnP0IAKoQoqGT1HA0KoKrRg-hJdxbjNY1lqNUBvC-iD7fAC0o8PX_jZ2U0HNZ65BGHXpgQu4antu4SfWvvpfGwjXrsaAp743d6GNnqH330N3TW6aGwX4eZUh2g9fV5NXov5x8ts8jgvKlbyVEhZl0QqLQQtK2WtzV-BbUAQLTk8qI1qGNUNFYpzKZmwREpRV7mhzBJF-BDdH_fug__uISaz9X1w-aRhSmiZZYgyU-MjVQUfY4DG7EO7s-HXUGIOwsxqaQ7CzElYTtwdEy0A_NNaSUGY5n8O4mUX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859710954</pqid></control><display><type>article</type><title>Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creator><creatorcontrib>Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creatorcontrib><description><![CDATA[Intermittent faults are common in daily life and industrial manufacture, which have been drawing much attention from both academia and industry. In practice, intermittent faults will pose a great threat to system performance and equipment safety. Because of the randomness and unpredictability of intermittent faults, it is a great challenge to diagnose them. The fault diagnosis strategy under system-level diagnostic model plays a very important role in measuring the endogenous network security without prior knowledge, which can significantly enhance the self-diagnosing capability of network. However, as the networks become large-scale and complicated, the fault diagnosis using full syndromes from a system-level diagnostic model seems to reach its bottleneck. In this article, we first determine that the intermittent fault diagnosability of a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model is <inline-formula><tex-math notation="LaTeX">(t^{\text{Intermittent}}(G))^{M}=r-2</tex-math></inline-formula>. This results can be directly applied to 18 well-known networks. Then, we propose a reliable neural network enabled intermittent fault diagnosis algorithm RNNIFDCom to solve the problem of fault identification with partial syndromes for a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model. Finally, we implement our proposed algorithm RNNIFDCom in different networks and analyze its performance under different number of faulty nodes in terms of true positive rate, true negative rate, false positive rate, and false negative rate. The experimental results verify the theoretical results and show the advantage of our proposed algorithm RNNIFDCom.]]></description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2022.3199504</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuit faults ; Comparison model ; Complexity theory ; Diagnostic systems ; Disorders ; Fault diagnosis ; Faults ; Integrated circuit modeling ; interconnection networks ; intermittent fault diagnosis ; Maintenance engineering ; neural network ; Neural networks ; Reliability</subject><ispartof>IEEE transactions on reliability, 2023-09, Vol.72 (3), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-77d407895514c8aaa952eafe50973e68b8f219f158337725a0775dc25a12a0803</cites><orcidid>0000-0003-4746-3179 ; 0000-0001-7227-6258 ; 0000-0001-6481-3981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875029$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9875029$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><title>Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description><![CDATA[Intermittent faults are common in daily life and industrial manufacture, which have been drawing much attention from both academia and industry. In practice, intermittent faults will pose a great threat to system performance and equipment safety. Because of the randomness and unpredictability of intermittent faults, it is a great challenge to diagnose them. The fault diagnosis strategy under system-level diagnostic model plays a very important role in measuring the endogenous network security without prior knowledge, which can significantly enhance the self-diagnosing capability of network. However, as the networks become large-scale and complicated, the fault diagnosis using full syndromes from a system-level diagnostic model seems to reach its bottleneck. In this article, we first determine that the intermittent fault diagnosability of a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model is <inline-formula><tex-math notation="LaTeX">(t^{\text{Intermittent}}(G))^{M}=r-2</tex-math></inline-formula>. This results can be directly applied to 18 well-known networks. Then, we propose a reliable neural network enabled intermittent fault diagnosis algorithm RNNIFDCom to solve the problem of fault identification with partial syndromes for a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model. Finally, we implement our proposed algorithm RNNIFDCom in different networks and analyze its performance under different number of faulty nodes in terms of true positive rate, true negative rate, false positive rate, and false negative rate. The experimental results verify the theoretical results and show the advantage of our proposed algorithm RNNIFDCom.]]></description><subject>Algorithms</subject><subject>Circuit faults</subject><subject>Comparison model</subject><subject>Complexity theory</subject><subject>Diagnostic systems</subject><subject>Disorders</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Integrated circuit modeling</subject><subject>interconnection networks</subject><subject>intermittent fault diagnosis</subject><subject>Maintenance engineering</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Reliability</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKtnD14CnrfNx8YkR6lWK7VCac8h3Z2VrdukJlnEf29Ki6eZgeedGR6EbikZUUr0eLUcMcLYiFOtBSnP0IAKoQoqGT1HA0KoKrRg-hJdxbjNY1lqNUBvC-iD7fAC0o8PX_jZ2U0HNZ65BGHXpgQu4antu4SfWvvpfGwjXrsaAp743d6GNnqH330N3TW6aGwX4eZUh2g9fV5NXov5x8ts8jgvKlbyVEhZl0QqLQQtK2WtzV-BbUAQLTk8qI1qGNUNFYpzKZmwREpRV7mhzBJF-BDdH_fug__uISaz9X1w-aRhSmiZZYgyU-MjVQUfY4DG7EO7s-HXUGIOwsxqaQ7CzElYTtwdEy0A_NNaSUGY5n8O4mUX</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lin, Limei</creator><creator>Zhou, Shuming</creator><creator>Hsieh, Sun-Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4746-3179</orcidid><orcidid>https://orcid.org/0000-0001-7227-6258</orcidid><orcidid>https://orcid.org/0000-0001-6481-3981</orcidid></search><sort><creationdate>20230901</creationdate><title>Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model</title><author>Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-77d407895514c8aaa952eafe50973e68b8f219f158337725a0775dc25a12a0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuit faults</topic><topic>Comparison model</topic><topic>Complexity theory</topic><topic>Diagnostic systems</topic><topic>Disorders</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Integrated circuit modeling</topic><topic>interconnection networks</topic><topic>intermittent fault diagnosis</topic><topic>Maintenance engineering</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Limei</au><au>Zhou, Shuming</au><au>Hsieh, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>72</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract><![CDATA[Intermittent faults are common in daily life and industrial manufacture, which have been drawing much attention from both academia and industry. In practice, intermittent faults will pose a great threat to system performance and equipment safety. Because of the randomness and unpredictability of intermittent faults, it is a great challenge to diagnose them. The fault diagnosis strategy under system-level diagnostic model plays a very important role in measuring the endogenous network security without prior knowledge, which can significantly enhance the self-diagnosing capability of network. However, as the networks become large-scale and complicated, the fault diagnosis using full syndromes from a system-level diagnostic model seems to reach its bottleneck. In this article, we first determine that the intermittent fault diagnosability of a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model is <inline-formula><tex-math notation="LaTeX">(t^{\text{Intermittent}}(G))^{M}=r-2</tex-math></inline-formula>. This results can be directly applied to 18 well-known networks. Then, we propose a reliable neural network enabled intermittent fault diagnosis algorithm RNNIFDCom to solve the problem of fault identification with partial syndromes for a general <inline-formula><tex-math notation="LaTeX">r</tex-math></inline-formula>-regular network <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> under comparison model. Finally, we implement our proposed algorithm RNNIFDCom in different networks and analyze its performance under different number of faulty nodes in terms of true positive rate, true negative rate, false positive rate, and false negative rate. The experimental results verify the theoretical results and show the advantage of our proposed algorithm RNNIFDCom.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2022.3199504</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4746-3179</orcidid><orcidid>https://orcid.org/0000-0001-7227-6258</orcidid><orcidid>https://orcid.org/0000-0001-6481-3981</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2023-09, Vol.72 (3), p.1-14 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TR_2022_3199504 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Circuit faults Comparison model Complexity theory Diagnostic systems Disorders Fault diagnosis Faults Integrated circuit modeling interconnection networks intermittent fault diagnosis Maintenance engineering neural network Neural networks Reliability |
title | Neural Network Enabled Intermittent Fault Diagnosis Under Comparison Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Enabled%20Intermittent%20Fault%20Diagnosis%20Under%20Comparison%20Model&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Lin,%20Limei&rft.date=2023-09-01&rft.volume=72&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2022.3199504&rft_dat=%3Cproquest_RIE%3E2859710954%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859710954&rft_id=info:pmid/&rft_ieee_id=9875029&rfr_iscdi=true |