Approximate Safety Properties in Metric Transition Systems
Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2022-03, Vol.71 (1), p.221-234 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 221 |
container_title | IEEE transactions on reliability |
container_volume | 71 |
creator | Qian, Junyan Shi, Fan Cai, Yong Pan, Haiyu |
description | Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold \alpha \ \text{taken from [0,1],} which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called \alpha-safety properties. Furthermore, we give an alternative characterization of \alpha-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of \alpha-safety properties is developed, assuming that the method to convert a regular \alpha-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches. |
doi_str_mv | 10.1109/TR.2021.3139616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2021_3139616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9687131</ieee_id><sourcerecordid>2635044084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnD14WPG_NZLP58FaKX1BR2vUcstlZ2GJ31yQF-9-b0uJpGPi9N_MeIbdAZwBUP1SrGaMMZgUUWoA4IxMoS5WDZHBOJpSCynXJ9CW5CmGTVs61mpDH-Tj64bfb2ojZ2rYY99mnH0b0scOQdX32jtF3Lqu87UMXu6HP1vsQcRuuyUVrvwPenOaUfD0_VYvXfPnx8raYL3PHeBHzkta2QUo5B66Qa2lFK6yUhVCs5jVvpLNQaydb3SghFNqmkUgdytpKV6piSu6PvunRnx2GaDbDzvfppGGiKJMxVTxRD0fK-SEEj60ZfUrl9waoORRkqpU5FGROBSXF3VHRIeI_rYWSkJA_9FthOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044084</pqid></control><display><type>article</type><title>Approximate Safety Properties in Metric Transition Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</creator><creatorcontrib>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</creatorcontrib><description><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2021.3139616</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Automata ; Bisimulation ; Cost accounting ; Extraterrestrial measurements ; linear-time (LT) property ; metric transition system (MTS) ; Model checking ; Probabilistic logic ; pseudometric ; Safety ; safety property</subject><ispartof>IEEE transactions on reliability, 2022-03, Vol.71 (1), p.221-234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</cites><orcidid>0000-0002-1325-6975 ; 0000-0002-9387-6153 ; 0000-0002-2496-837X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9687131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9687131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qian, Junyan</creatorcontrib><creatorcontrib>Shi, Fan</creatorcontrib><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Pan, Haiyu</creatorcontrib><title>Approximate Safety Properties in Metric Transition Systems</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Automata</subject><subject>Bisimulation</subject><subject>Cost accounting</subject><subject>Extraterrestrial measurements</subject><subject>linear-time (LT) property</subject><subject>metric transition system (MTS)</subject><subject>Model checking</subject><subject>Probabilistic logic</subject><subject>pseudometric</subject><subject>Safety</subject><subject>safety property</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKtnD14WPG_NZLP58FaKX1BR2vUcstlZ2GJ31yQF-9-b0uJpGPi9N_MeIbdAZwBUP1SrGaMMZgUUWoA4IxMoS5WDZHBOJpSCynXJ9CW5CmGTVs61mpDH-Tj64bfb2ojZ2rYY99mnH0b0scOQdX32jtF3Lqu87UMXu6HP1vsQcRuuyUVrvwPenOaUfD0_VYvXfPnx8raYL3PHeBHzkta2QUo5B66Qa2lFK6yUhVCs5jVvpLNQaydb3SghFNqmkUgdytpKV6piSu6PvunRnx2GaDbDzvfppGGiKJMxVTxRD0fK-SEEj60ZfUrl9waoORRkqpU5FGROBSXF3VHRIeI_rYWSkJA_9FthOw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Qian, Junyan</creator><creator>Shi, Fan</creator><creator>Cai, Yong</creator><creator>Pan, Haiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1325-6975</orcidid><orcidid>https://orcid.org/0000-0002-9387-6153</orcidid><orcidid>https://orcid.org/0000-0002-2496-837X</orcidid></search><sort><creationdate>20220301</creationdate><title>Approximate Safety Properties in Metric Transition Systems</title><author>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Automata</topic><topic>Bisimulation</topic><topic>Cost accounting</topic><topic>Extraterrestrial measurements</topic><topic>linear-time (LT) property</topic><topic>metric transition system (MTS)</topic><topic>Model checking</topic><topic>Probabilistic logic</topic><topic>pseudometric</topic><topic>Safety</topic><topic>safety property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Junyan</creatorcontrib><creatorcontrib>Shi, Fan</creatorcontrib><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Pan, Haiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Junyan</au><au>Shi, Fan</au><au>Cai, Yong</au><au>Pan, Haiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Safety Properties in Metric Transition Systems</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>71</volume><issue>1</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2021.3139616</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1325-6975</orcidid><orcidid>https://orcid.org/0000-0002-9387-6153</orcidid><orcidid>https://orcid.org/0000-0002-2496-837X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2022-03, Vol.71 (1), p.221-234 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TR_2021_3139616 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Automata Bisimulation Cost accounting Extraterrestrial measurements linear-time (LT) property metric transition system (MTS) Model checking Probabilistic logic pseudometric Safety safety property |
title | Approximate Safety Properties in Metric Transition Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Safety%20Properties%20in%20Metric%20Transition%20Systems&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Qian,%20Junyan&rft.date=2022-03-01&rft.volume=71&rft.issue=1&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2021.3139616&rft_dat=%3Cproquest_RIE%3E2635044084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044084&rft_id=info:pmid/&rft_ieee_id=9687131&rfr_iscdi=true |