Approximate Safety Properties in Metric Transition Systems

Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2022-03, Vol.71 (1), p.221-234
Hauptverfasser: Qian, Junyan, Shi, Fan, Cai, Yong, Pan, Haiyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 221
container_title IEEE transactions on reliability
container_volume 71
creator Qian, Junyan
Shi, Fan
Cai, Yong
Pan, Haiyu
description Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold \alpha \ \text{taken from [0,1],} which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called \alpha-safety properties. Furthermore, we give an alternative characterization of \alpha-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of \alpha-safety properties is developed, assuming that the method to convert a regular \alpha-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.
doi_str_mv 10.1109/TR.2021.3139616
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2021_3139616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9687131</ieee_id><sourcerecordid>2635044084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnD14WPG_NZLP58FaKX1BR2vUcstlZ2GJ31yQF-9-b0uJpGPi9N_MeIbdAZwBUP1SrGaMMZgUUWoA4IxMoS5WDZHBOJpSCynXJ9CW5CmGTVs61mpDH-Tj64bfb2ojZ2rYY99mnH0b0scOQdX32jtF3Lqu87UMXu6HP1vsQcRuuyUVrvwPenOaUfD0_VYvXfPnx8raYL3PHeBHzkta2QUo5B66Qa2lFK6yUhVCs5jVvpLNQaydb3SghFNqmkUgdytpKV6piSu6PvunRnx2GaDbDzvfppGGiKJMxVTxRD0fK-SEEj60ZfUrl9waoORRkqpU5FGROBSXF3VHRIeI_rYWSkJA_9FthOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044084</pqid></control><display><type>article</type><title>Approximate Safety Properties in Metric Transition Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</creator><creatorcontrib>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</creatorcontrib><description><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2021.3139616</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Automata ; Bisimulation ; Cost accounting ; Extraterrestrial measurements ; linear-time (LT) property ; metric transition system (MTS) ; Model checking ; Probabilistic logic ; pseudometric ; Safety ; safety property</subject><ispartof>IEEE transactions on reliability, 2022-03, Vol.71 (1), p.221-234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</cites><orcidid>0000-0002-1325-6975 ; 0000-0002-9387-6153 ; 0000-0002-2496-837X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9687131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9687131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qian, Junyan</creatorcontrib><creatorcontrib>Shi, Fan</creatorcontrib><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Pan, Haiyu</creatorcontrib><title>Approximate Safety Properties in Metric Transition Systems</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Automata</subject><subject>Bisimulation</subject><subject>Cost accounting</subject><subject>Extraterrestrial measurements</subject><subject>linear-time (LT) property</subject><subject>metric transition system (MTS)</subject><subject>Model checking</subject><subject>Probabilistic logic</subject><subject>pseudometric</subject><subject>Safety</subject><subject>safety property</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKtnD14WPG_NZLP58FaKX1BR2vUcstlZ2GJ31yQF-9-b0uJpGPi9N_MeIbdAZwBUP1SrGaMMZgUUWoA4IxMoS5WDZHBOJpSCynXJ9CW5CmGTVs61mpDH-Tj64bfb2ojZ2rYY99mnH0b0scOQdX32jtF3Lqu87UMXu6HP1vsQcRuuyUVrvwPenOaUfD0_VYvXfPnx8raYL3PHeBHzkta2QUo5B66Qa2lFK6yUhVCs5jVvpLNQaydb3SghFNqmkUgdytpKV6piSu6PvunRnx2GaDbDzvfppGGiKJMxVTxRD0fK-SEEj60ZfUrl9waoORRkqpU5FGROBSXF3VHRIeI_rYWSkJA_9FthOw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Qian, Junyan</creator><creator>Shi, Fan</creator><creator>Cai, Yong</creator><creator>Pan, Haiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1325-6975</orcidid><orcidid>https://orcid.org/0000-0002-9387-6153</orcidid><orcidid>https://orcid.org/0000-0002-2496-837X</orcidid></search><sort><creationdate>20220301</creationdate><title>Approximate Safety Properties in Metric Transition Systems</title><author>Qian, Junyan ; Shi, Fan ; Cai, Yong ; Pan, Haiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-50bade0044148e497a6f6a773682b4b4d7ca1b9c7f9d8668eadd7e0ce7ba7c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Automata</topic><topic>Bisimulation</topic><topic>Cost accounting</topic><topic>Extraterrestrial measurements</topic><topic>linear-time (LT) property</topic><topic>metric transition system (MTS)</topic><topic>Model checking</topic><topic>Probabilistic logic</topic><topic>pseudometric</topic><topic>Safety</topic><topic>safety property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Junyan</creatorcontrib><creatorcontrib>Shi, Fan</creatorcontrib><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Pan, Haiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Junyan</au><au>Shi, Fan</au><au>Cai, Yong</au><au>Pan, Haiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Safety Properties in Metric Transition Systems</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>71</volume><issue>1</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract><![CDATA[Metric transition systems (MTSs) are proposed for quantitative verification of reactive systems. There are already a number of papers on quantitatively analyzing behaviors of systems based on MTSs. In this article, we make further progress along this research line by lifting safety properties, which assert that nothing "bad" happens during execution of systems, to MTSs. First, we introduce a distance threshold <inline-formula><tex-math notation="LaTeX">\alpha \ \text{taken from [0,1],}</tex-math></inline-formula> which is used to analyze to what extent a system satisfies its specification. Then, we present a quantitative extension of safety properties, called <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties. Furthermore, we give an alternative characterization of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties by means of their closure. In addition, an algorithm for verifying whether a system satisfies a subclass of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety properties is developed, assuming that the method to convert a regular <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-safety property to an equivalent metric finite automaton has been given. Finally, we present an example to illustrate our approaches.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2021.3139616</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1325-6975</orcidid><orcidid>https://orcid.org/0000-0002-9387-6153</orcidid><orcidid>https://orcid.org/0000-0002-2496-837X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2022-03, Vol.71 (1), p.221-234
issn 0018-9529
1558-1721
language eng
recordid cdi_crossref_primary_10_1109_TR_2021_3139616
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Automata
Bisimulation
Cost accounting
Extraterrestrial measurements
linear-time (LT) property
metric transition system (MTS)
Model checking
Probabilistic logic
pseudometric
Safety
safety property
title Approximate Safety Properties in Metric Transition Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Safety%20Properties%20in%20Metric%20Transition%20Systems&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Qian,%20Junyan&rft.date=2022-03-01&rft.volume=71&rft.issue=1&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2021.3139616&rft_dat=%3Cproquest_RIE%3E2635044084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044084&rft_id=info:pmid/&rft_ieee_id=9687131&rfr_iscdi=true