A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots

The uncertain variables of the link dimensions and joint clearances, whose deviation is caused by manufacturing and assembling errors, have a considerable influence on the positioning accuracy of industrial robots. Understanding how these uncertain variables affect the positioning accuracy of indust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2020-06, Vol.69 (2), p.699-714
Hauptverfasser: Wu, Jinhui, Zhang, Dequan, Liu, Jie, Han, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 2
container_start_page 699
container_title IEEE transactions on reliability
container_volume 69
creator Wu, Jinhui
Zhang, Dequan
Liu, Jie
Han, Xu
description The uncertain variables of the link dimensions and joint clearances, whose deviation is caused by manufacturing and assembling errors, have a considerable influence on the positioning accuracy of industrial robots. Understanding how these uncertain variables affect the positioning accuracy of industrial robots is very important to select appropriate parameters during design process. In this paper, the positioning accuracy reliability of industrial robots is analyzed considering the influence of uncertain variables. First, the kinematic models of industrial robots are established based on the Denavit-Hartenberg method, in which the link lengths and joint rotation angles are treated as uncertain variables. Second, the Sobol' method is used to analyze the sensitivity of uncertain variables for the positioning accuracy of industrial robots, by which the sensitive variables are determined to perform the reliability analysis. Finally, in view of the sensitive variables, the first-four order moments and probability density function of the manipulator's positioning point are assessed by the point estimation method (PEM) in three examples. The Monte Carlo simulation method, the maximum entropy problem with fractional order moments (maximum entropy problem with fractional order moments method (ME-FM) method), and the experimental method are also performed as comparative methods. All the results demonstrate that the proposed PEM has a higher accuracy and efficiency to assess the positioning accuracy reliability of industrial robots.
doi_str_mv 10.1109/TR.2019.2919540
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2019_2919540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759075</ieee_id><sourcerecordid>2409381785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bfaed06f99d1a221a1c7486a87e44ada80b0feb3b743577b1f7a8f272d7905873</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKdnD14CnrslabIkxzJ0DiZKqeeQtolmdM1M0kP_vR0bnj4-eN6XlweAR4wWGCO5rMoFQVguiMSSUXQFZpgxkWFO8DWYIYRFJhmRt-Auxv30UirFDFQFfPcH0ydYHI_B6-YHJg8_fXTJ-d7137BomiHoZoSl6ZyuXefSCIted2N0EVof4LZvh5iC0x0sfe1TvAc3VnfRPFzuHHy9vlTrt2z3sdmui13W5IylrLbatGhlpWyxJgRr3HAqVlpwQ6lutUA1sqbOa05zxnmNLdfCEk5aLhETPJ-D53PvtPx3MDGpvR_CNC0qQpHMBeaCTdTyTDXBxxiMVcfgDjqMCiN1UqeqUp3UqYu6KfF0TjhjzD8tOJOIs_wPs0ZqKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409381785</pqid></control><display><type>article</type><title>A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Jinhui ; Zhang, Dequan ; Liu, Jie ; Han, Xu</creator><creatorcontrib>Wu, Jinhui ; Zhang, Dequan ; Liu, Jie ; Han, Xu</creatorcontrib><description>The uncertain variables of the link dimensions and joint clearances, whose deviation is caused by manufacturing and assembling errors, have a considerable influence on the positioning accuracy of industrial robots. Understanding how these uncertain variables affect the positioning accuracy of industrial robots is very important to select appropriate parameters during design process. In this paper, the positioning accuracy reliability of industrial robots is analyzed considering the influence of uncertain variables. First, the kinematic models of industrial robots are established based on the Denavit-Hartenberg method, in which the link lengths and joint rotation angles are treated as uncertain variables. Second, the Sobol' method is used to analyze the sensitivity of uncertain variables for the positioning accuracy of industrial robots, by which the sensitive variables are determined to perform the reliability analysis. Finally, in view of the sensitive variables, the first-four order moments and probability density function of the manipulator's positioning point are assessed by the point estimation method (PEM) in three examples. The Monte Carlo simulation method, the maximum entropy problem with fractional order moments (maximum entropy problem with fractional order moments method (ME-FM) method), and the experimental method are also performed as comparative methods. All the results demonstrate that the proposed PEM has a higher accuracy and efficiency to assess the positioning accuracy reliability of industrial robots.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2019.2919540</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Clearances ; Computer simulation ; Design parameters ; First-four order moments ; Industrial robots ; Kinematics ; Manipulators ; Manufacturing engineering ; Maximum entropy ; Monte Carlo simulation ; point estimation method (PEM) ; positioning accuracy ; Probability density functions ; Process parameters ; Reliability ; Reliability analysis ; Robot kinematics ; Robot sensing systems ; Robots ; Sensitivity analysis ; Service robots</subject><ispartof>IEEE transactions on reliability, 2020-06, Vol.69 (2), p.699-714</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bfaed06f99d1a221a1c7486a87e44ada80b0feb3b743577b1f7a8f272d7905873</citedby><cites>FETCH-LOGICAL-c355t-bfaed06f99d1a221a1c7486a87e44ada80b0feb3b743577b1f7a8f272d7905873</cites><orcidid>0000-0003-3886-1546 ; 0000-0002-9962-8097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Jinhui</creatorcontrib><creatorcontrib>Zhang, Dequan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><title>A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The uncertain variables of the link dimensions and joint clearances, whose deviation is caused by manufacturing and assembling errors, have a considerable influence on the positioning accuracy of industrial robots. Understanding how these uncertain variables affect the positioning accuracy of industrial robots is very important to select appropriate parameters during design process. In this paper, the positioning accuracy reliability of industrial robots is analyzed considering the influence of uncertain variables. First, the kinematic models of industrial robots are established based on the Denavit-Hartenberg method, in which the link lengths and joint rotation angles are treated as uncertain variables. Second, the Sobol' method is used to analyze the sensitivity of uncertain variables for the positioning accuracy of industrial robots, by which the sensitive variables are determined to perform the reliability analysis. Finally, in view of the sensitive variables, the first-four order moments and probability density function of the manipulator's positioning point are assessed by the point estimation method (PEM) in three examples. The Monte Carlo simulation method, the maximum entropy problem with fractional order moments (maximum entropy problem with fractional order moments method (ME-FM) method), and the experimental method are also performed as comparative methods. All the results demonstrate that the proposed PEM has a higher accuracy and efficiency to assess the positioning accuracy reliability of industrial robots.</description><subject>Accuracy</subject><subject>Clearances</subject><subject>Computer simulation</subject><subject>Design parameters</subject><subject>First-four order moments</subject><subject>Industrial robots</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Manufacturing engineering</subject><subject>Maximum entropy</subject><subject>Monte Carlo simulation</subject><subject>point estimation method (PEM)</subject><subject>positioning accuracy</subject><subject>Probability density functions</subject><subject>Process parameters</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Sensitivity analysis</subject><subject>Service robots</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKdnD14CnrslabIkxzJ0DiZKqeeQtolmdM1M0kP_vR0bnj4-eN6XlweAR4wWGCO5rMoFQVguiMSSUXQFZpgxkWFO8DWYIYRFJhmRt-Auxv30UirFDFQFfPcH0ydYHI_B6-YHJg8_fXTJ-d7137BomiHoZoSl6ZyuXefSCIted2N0EVof4LZvh5iC0x0sfe1TvAc3VnfRPFzuHHy9vlTrt2z3sdmui13W5IylrLbatGhlpWyxJgRr3HAqVlpwQ6lutUA1sqbOa05zxnmNLdfCEk5aLhETPJ-D53PvtPx3MDGpvR_CNC0qQpHMBeaCTdTyTDXBxxiMVcfgDjqMCiN1UqeqUp3UqYu6KfF0TjhjzD8tOJOIs_wPs0ZqKg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wu, Jinhui</creator><creator>Zhang, Dequan</creator><creator>Liu, Jie</creator><creator>Han, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3886-1546</orcidid><orcidid>https://orcid.org/0000-0002-9962-8097</orcidid></search><sort><creationdate>202006</creationdate><title>A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots</title><author>Wu, Jinhui ; Zhang, Dequan ; Liu, Jie ; Han, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bfaed06f99d1a221a1c7486a87e44ada80b0feb3b743577b1f7a8f272d7905873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Clearances</topic><topic>Computer simulation</topic><topic>Design parameters</topic><topic>First-four order moments</topic><topic>Industrial robots</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Manufacturing engineering</topic><topic>Maximum entropy</topic><topic>Monte Carlo simulation</topic><topic>point estimation method (PEM)</topic><topic>positioning accuracy</topic><topic>Probability density functions</topic><topic>Process parameters</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Sensitivity analysis</topic><topic>Service robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jinhui</creatorcontrib><creatorcontrib>Zhang, Dequan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Jinhui</au><au>Zhang, Dequan</au><au>Liu, Jie</au><au>Han, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2020-06</date><risdate>2020</risdate><volume>69</volume><issue>2</issue><spage>699</spage><epage>714</epage><pages>699-714</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The uncertain variables of the link dimensions and joint clearances, whose deviation is caused by manufacturing and assembling errors, have a considerable influence on the positioning accuracy of industrial robots. Understanding how these uncertain variables affect the positioning accuracy of industrial robots is very important to select appropriate parameters during design process. In this paper, the positioning accuracy reliability of industrial robots is analyzed considering the influence of uncertain variables. First, the kinematic models of industrial robots are established based on the Denavit-Hartenberg method, in which the link lengths and joint rotation angles are treated as uncertain variables. Second, the Sobol' method is used to analyze the sensitivity of uncertain variables for the positioning accuracy of industrial robots, by which the sensitive variables are determined to perform the reliability analysis. Finally, in view of the sensitive variables, the first-four order moments and probability density function of the manipulator's positioning point are assessed by the point estimation method (PEM) in three examples. The Monte Carlo simulation method, the maximum entropy problem with fractional order moments (maximum entropy problem with fractional order moments method (ME-FM) method), and the experimental method are also performed as comparative methods. All the results demonstrate that the proposed PEM has a higher accuracy and efficiency to assess the positioning accuracy reliability of industrial robots.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2019.2919540</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3886-1546</orcidid><orcidid>https://orcid.org/0000-0002-9962-8097</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2020-06, Vol.69 (2), p.699-714
issn 0018-9529
1558-1721
language eng
recordid cdi_crossref_primary_10_1109_TR_2019_2919540
source IEEE Electronic Library (IEL)
subjects Accuracy
Clearances
Computer simulation
Design parameters
First-four order moments
Industrial robots
Kinematics
Manipulators
Manufacturing engineering
Maximum entropy
Monte Carlo simulation
point estimation method (PEM)
positioning accuracy
Probability density functions
Process parameters
Reliability
Reliability analysis
Robot kinematics
Robot sensing systems
Robots
Sensitivity analysis
Service robots
title A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Moment%20Approach%20to%20Positioning%20Accuracy%20Reliability%20Analysis%20for%20Industrial%20Robots&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Wu,%20Jinhui&rft.date=2020-06&rft.volume=69&rft.issue=2&rft.spage=699&rft.epage=714&rft.pages=699-714&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2019.2919540&rft_dat=%3Cproquest_RIE%3E2409381785%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409381785&rft_id=info:pmid/&rft_ieee_id=8759075&rfr_iscdi=true