Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment

Tremor is one of the most prevalent movement disorders, which is especially observed in patients with Parkinson's disease (PD) and other conditions common in palliative care (PC). Effective treatment and monitoring of disease progression are crucial in the context of PC for patients suffering f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on radar systems 2024, Vol.2, p.1174-1185
Hauptverfasser: Mejdani, Desar, Braunig, Johanna, Griebhammer, Stefan G., Krauss, Daniel, Steigleder, Tobias, Engel, Lukas, Jukic, Jelena, Rozhdestvenskaya, Anna, Winkler, Jurgen, Eskofier, Bjoern, Ostgathe, Christoph, Vossiek, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue
container_start_page 1174
container_title IEEE transactions on radar systems
container_volume 2
creator Mejdani, Desar
Braunig, Johanna
Griebhammer, Stefan G.
Krauss, Daniel
Steigleder, Tobias
Engel, Lukas
Jukic, Jelena
Rozhdestvenskaya, Anna
Winkler, Jurgen
Eskofier, Bjoern
Ostgathe, Christoph
Vossiek, Martin
description Tremor is one of the most prevalent movement disorders, which is especially observed in patients with Parkinson's disease (PD) and other conditions common in palliative care (PC). Effective treatment and monitoring of disease progression are crucial in the context of PC for patients suffering from movement disorders. To this aim, accurate and continuous detection and assessment of tremor characteristics, such as the tremor frequency, is required. Current evaluations by clinicians conducted during sporadic consultations are subjective and intermittent. Radar sensors provide continuous, objective evaluations of tremor motion in patient monitoring, offering a contactless, light-independent, and privacy-preserving method that directly measures tremor's radial motion through the Doppler effect. As previous radar-based research lacks continuous tremor monitoring in realistic scenarios, this study uses a frequency-modulated continuous-wave (FMCW) radar to detect subtle tremor motions and estimates their frequencies amid challenges such as large body motion interference in a clinical setting. Seventeen healthy participants were instructed to mimic tremors in their right hand while performing three diagnostics movements frequently used in tremor assessment, and two activities that were inspired by common daily tasks encountered in PC settings. Tremor detection and frequency estimation was enabled using suitable radar signal preprocessing followed by a neural network comprising convolutional and recurrent layers. Reference frequencies were obtained from an inertial measurement unit (IMU) attached to the participants' right hands. Cross-validation revealed a mean absolute error (MAE) of 1.47 Hz in radar-based frequency estimation compared with the reference and a 90% accuracy in distinguishing the presence or absence of tremor, highlighting the proposed approach's high potential for future tremor assessment.
doi_str_mv 10.1109/TRS.2024.3494473
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRS_2024_3494473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10747547</ieee_id><sourcerecordid>10_1109_TRS_2024_3494473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627-3292de17815bd648885749b8b266a07c4572f3276513b8cb0614a3a4a2940a043</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EElXpzsDgjSnFX7GdsZSvSpWAEuboklyQoXEqO1Ti35OoHTrdvbr3ueEh5JqzOecsu8s3H3PBhJpLlSll5BmZCCtFYmRqzk_2SzKL8ZsxJjLNU8YmpN1ADSG5h4g1zQO2XaDvv-B717gKetd5-hmd_6IPiDu6Rgh-TM1QW7W70O0H7A3Cj_Ox87eRgh_zdusGdo90CQHpIkaMsUXfX5GLBrYRZ8c5JfnTY758Sdavz6vlYp1UWphEikzUyI3laVlrZa1NjcpKWwqtgZlKpUY0UhidclnaqmSaK5CgQGSKAVNyStjhbRW6GAM2xS64FsJfwVkxCisGYcUorDgKG5CbA-IQ8aRulEmH-z9WUGaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Mejdani, Desar ; Braunig, Johanna ; Griebhammer, Stefan G. ; Krauss, Daniel ; Steigleder, Tobias ; Engel, Lukas ; Jukic, Jelena ; Rozhdestvenskaya, Anna ; Winkler, Jurgen ; Eskofier, Bjoern ; Ostgathe, Christoph ; Vossiek, Martin</creator><creatorcontrib>Mejdani, Desar ; Braunig, Johanna ; Griebhammer, Stefan G. ; Krauss, Daniel ; Steigleder, Tobias ; Engel, Lukas ; Jukic, Jelena ; Rozhdestvenskaya, Anna ; Winkler, Jurgen ; Eskofier, Bjoern ; Ostgathe, Christoph ; Vossiek, Martin</creatorcontrib><description>Tremor is one of the most prevalent movement disorders, which is especially observed in patients with Parkinson's disease (PD) and other conditions common in palliative care (PC). Effective treatment and monitoring of disease progression are crucial in the context of PC for patients suffering from movement disorders. To this aim, accurate and continuous detection and assessment of tremor characteristics, such as the tremor frequency, is required. Current evaluations by clinicians conducted during sporadic consultations are subjective and intermittent. Radar sensors provide continuous, objective evaluations of tremor motion in patient monitoring, offering a contactless, light-independent, and privacy-preserving method that directly measures tremor's radial motion through the Doppler effect. As previous radar-based research lacks continuous tremor monitoring in realistic scenarios, this study uses a frequency-modulated continuous-wave (FMCW) radar to detect subtle tremor motions and estimates their frequencies amid challenges such as large body motion interference in a clinical setting. Seventeen healthy participants were instructed to mimic tremors in their right hand while performing three diagnostics movements frequently used in tremor assessment, and two activities that were inspired by common daily tasks encountered in PC settings. Tremor detection and frequency estimation was enabled using suitable radar signal preprocessing followed by a neural network comprising convolutional and recurrent layers. Reference frequencies were obtained from an inertial measurement unit (IMU) attached to the participants' right hands. Cross-validation revealed a mean absolute error (MAE) of 1.47 Hz in radar-based frequency estimation compared with the reference and a 90% accuracy in distinguishing the presence or absence of tremor, highlighting the proposed approach's high potential for future tremor assessment.</description><identifier>ISSN: 2832-7357</identifier><identifier>EISSN: 2832-7357</identifier><identifier>DOI: 10.1109/TRS.2024.3494473</identifier><identifier>CODEN: ITRSBN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chirp ; Deep learning ; Diseases ; Doppler effect ; Doppler radar ; Frequency estimation ; Kinetic theory ; neural network ; Palliative care ; palliative care (PC) ; Parkinson’s disease (PD) ; Radar ; Radar antennas ; Sensors ; tremor</subject><ispartof>IEEE transactions on radar systems, 2024, Vol.2, p.1174-1185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-6321-2483 ; 0000-0002-8369-345X ; 0000-0001-8017-7970 ; 0009-0005-7790-5312 ; 0009-0003-6706-4893 ; 0000-0003-2276-272X ; 0009-0009-0051-2835 ; 0000-0003-0630-9204 ; 0000-0002-0417-0336 ; 0000-0003-4449-5036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10747547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10747547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mejdani, Desar</creatorcontrib><creatorcontrib>Braunig, Johanna</creatorcontrib><creatorcontrib>Griebhammer, Stefan G.</creatorcontrib><creatorcontrib>Krauss, Daniel</creatorcontrib><creatorcontrib>Steigleder, Tobias</creatorcontrib><creatorcontrib>Engel, Lukas</creatorcontrib><creatorcontrib>Jukic, Jelena</creatorcontrib><creatorcontrib>Rozhdestvenskaya, Anna</creatorcontrib><creatorcontrib>Winkler, Jurgen</creatorcontrib><creatorcontrib>Eskofier, Bjoern</creatorcontrib><creatorcontrib>Ostgathe, Christoph</creatorcontrib><creatorcontrib>Vossiek, Martin</creatorcontrib><title>Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment</title><title>IEEE transactions on radar systems</title><addtitle>TRS</addtitle><description>Tremor is one of the most prevalent movement disorders, which is especially observed in patients with Parkinson's disease (PD) and other conditions common in palliative care (PC). Effective treatment and monitoring of disease progression are crucial in the context of PC for patients suffering from movement disorders. To this aim, accurate and continuous detection and assessment of tremor characteristics, such as the tremor frequency, is required. Current evaluations by clinicians conducted during sporadic consultations are subjective and intermittent. Radar sensors provide continuous, objective evaluations of tremor motion in patient monitoring, offering a contactless, light-independent, and privacy-preserving method that directly measures tremor's radial motion through the Doppler effect. As previous radar-based research lacks continuous tremor monitoring in realistic scenarios, this study uses a frequency-modulated continuous-wave (FMCW) radar to detect subtle tremor motions and estimates their frequencies amid challenges such as large body motion interference in a clinical setting. Seventeen healthy participants were instructed to mimic tremors in their right hand while performing three diagnostics movements frequently used in tremor assessment, and two activities that were inspired by common daily tasks encountered in PC settings. Tremor detection and frequency estimation was enabled using suitable radar signal preprocessing followed by a neural network comprising convolutional and recurrent layers. Reference frequencies were obtained from an inertial measurement unit (IMU) attached to the participants' right hands. Cross-validation revealed a mean absolute error (MAE) of 1.47 Hz in radar-based frequency estimation compared with the reference and a 90% accuracy in distinguishing the presence or absence of tremor, highlighting the proposed approach's high potential for future tremor assessment.</description><subject>Chirp</subject><subject>Deep learning</subject><subject>Diseases</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Frequency estimation</subject><subject>Kinetic theory</subject><subject>neural network</subject><subject>Palliative care</subject><subject>palliative care (PC)</subject><subject>Parkinson’s disease (PD)</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Sensors</subject><subject>tremor</subject><issn>2832-7357</issn><issn>2832-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EElXpzsDgjSnFX7GdsZSvSpWAEuboklyQoXEqO1Ti35OoHTrdvbr3ueEh5JqzOecsu8s3H3PBhJpLlSll5BmZCCtFYmRqzk_2SzKL8ZsxJjLNU8YmpN1ADSG5h4g1zQO2XaDvv-B717gKetd5-hmd_6IPiDu6Rgh-TM1QW7W70O0H7A3Cj_Ox87eRgh_zdusGdo90CQHpIkaMsUXfX5GLBrYRZ8c5JfnTY758Sdavz6vlYp1UWphEikzUyI3laVlrZa1NjcpKWwqtgZlKpUY0UhidclnaqmSaK5CgQGSKAVNyStjhbRW6GAM2xS64FsJfwVkxCisGYcUorDgKG5CbA-IQ8aRulEmH-z9WUGaM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mejdani, Desar</creator><creator>Braunig, Johanna</creator><creator>Griebhammer, Stefan G.</creator><creator>Krauss, Daniel</creator><creator>Steigleder, Tobias</creator><creator>Engel, Lukas</creator><creator>Jukic, Jelena</creator><creator>Rozhdestvenskaya, Anna</creator><creator>Winkler, Jurgen</creator><creator>Eskofier, Bjoern</creator><creator>Ostgathe, Christoph</creator><creator>Vossiek, Martin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-6321-2483</orcidid><orcidid>https://orcid.org/0000-0002-8369-345X</orcidid><orcidid>https://orcid.org/0000-0001-8017-7970</orcidid><orcidid>https://orcid.org/0009-0005-7790-5312</orcidid><orcidid>https://orcid.org/0009-0003-6706-4893</orcidid><orcidid>https://orcid.org/0000-0003-2276-272X</orcidid><orcidid>https://orcid.org/0009-0009-0051-2835</orcidid><orcidid>https://orcid.org/0000-0003-0630-9204</orcidid><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-4449-5036</orcidid></search><sort><creationdate>2024</creationdate><title>Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment</title><author>Mejdani, Desar ; Braunig, Johanna ; Griebhammer, Stefan G. ; Krauss, Daniel ; Steigleder, Tobias ; Engel, Lukas ; Jukic, Jelena ; Rozhdestvenskaya, Anna ; Winkler, Jurgen ; Eskofier, Bjoern ; Ostgathe, Christoph ; Vossiek, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627-3292de17815bd648885749b8b266a07c4572f3276513b8cb0614a3a4a2940a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chirp</topic><topic>Deep learning</topic><topic>Diseases</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Frequency estimation</topic><topic>Kinetic theory</topic><topic>neural network</topic><topic>Palliative care</topic><topic>palliative care (PC)</topic><topic>Parkinson’s disease (PD)</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Sensors</topic><topic>tremor</topic><toplevel>online_resources</toplevel><creatorcontrib>Mejdani, Desar</creatorcontrib><creatorcontrib>Braunig, Johanna</creatorcontrib><creatorcontrib>Griebhammer, Stefan G.</creatorcontrib><creatorcontrib>Krauss, Daniel</creatorcontrib><creatorcontrib>Steigleder, Tobias</creatorcontrib><creatorcontrib>Engel, Lukas</creatorcontrib><creatorcontrib>Jukic, Jelena</creatorcontrib><creatorcontrib>Rozhdestvenskaya, Anna</creatorcontrib><creatorcontrib>Winkler, Jurgen</creatorcontrib><creatorcontrib>Eskofier, Bjoern</creatorcontrib><creatorcontrib>Ostgathe, Christoph</creatorcontrib><creatorcontrib>Vossiek, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on radar systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mejdani, Desar</au><au>Braunig, Johanna</au><au>Griebhammer, Stefan G.</au><au>Krauss, Daniel</au><au>Steigleder, Tobias</au><au>Engel, Lukas</au><au>Jukic, Jelena</au><au>Rozhdestvenskaya, Anna</au><au>Winkler, Jurgen</au><au>Eskofier, Bjoern</au><au>Ostgathe, Christoph</au><au>Vossiek, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment</atitle><jtitle>IEEE transactions on radar systems</jtitle><stitle>TRS</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>1174</spage><epage>1185</epage><pages>1174-1185</pages><issn>2832-7357</issn><eissn>2832-7357</eissn><coden>ITRSBN</coden><abstract>Tremor is one of the most prevalent movement disorders, which is especially observed in patients with Parkinson's disease (PD) and other conditions common in palliative care (PC). Effective treatment and monitoring of disease progression are crucial in the context of PC for patients suffering from movement disorders. To this aim, accurate and continuous detection and assessment of tremor characteristics, such as the tremor frequency, is required. Current evaluations by clinicians conducted during sporadic consultations are subjective and intermittent. Radar sensors provide continuous, objective evaluations of tremor motion in patient monitoring, offering a contactless, light-independent, and privacy-preserving method that directly measures tremor's radial motion through the Doppler effect. As previous radar-based research lacks continuous tremor monitoring in realistic scenarios, this study uses a frequency-modulated continuous-wave (FMCW) radar to detect subtle tremor motions and estimates their frequencies amid challenges such as large body motion interference in a clinical setting. Seventeen healthy participants were instructed to mimic tremors in their right hand while performing three diagnostics movements frequently used in tremor assessment, and two activities that were inspired by common daily tasks encountered in PC settings. Tremor detection and frequency estimation was enabled using suitable radar signal preprocessing followed by a neural network comprising convolutional and recurrent layers. Reference frequencies were obtained from an inertial measurement unit (IMU) attached to the participants' right hands. Cross-validation revealed a mean absolute error (MAE) of 1.47 Hz in radar-based frequency estimation compared with the reference and a 90% accuracy in distinguishing the presence or absence of tremor, highlighting the proposed approach's high potential for future tremor assessment.</abstract><pub>IEEE</pub><doi>10.1109/TRS.2024.3494473</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0006-6321-2483</orcidid><orcidid>https://orcid.org/0000-0002-8369-345X</orcidid><orcidid>https://orcid.org/0000-0001-8017-7970</orcidid><orcidid>https://orcid.org/0009-0005-7790-5312</orcidid><orcidid>https://orcid.org/0009-0003-6706-4893</orcidid><orcidid>https://orcid.org/0000-0003-2276-272X</orcidid><orcidid>https://orcid.org/0009-0009-0051-2835</orcidid><orcidid>https://orcid.org/0000-0003-0630-9204</orcidid><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-4449-5036</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2832-7357
ispartof IEEE transactions on radar systems, 2024, Vol.2, p.1174-1185
issn 2832-7357
2832-7357
language eng
recordid cdi_crossref_primary_10_1109_TRS_2024_3494473
source IEEE Electronic Library (IEL)
subjects Chirp
Deep learning
Diseases
Doppler effect
Doppler radar
Frequency estimation
Kinetic theory
neural network
Palliative care
palliative care (PC)
Parkinson’s disease (PD)
Radar
Radar antennas
Sensors
tremor
title Radar-Based Tremor Quantification Using Deep Learning for Improved Parkinson's and Palliative Care Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar-Based%20Tremor%20Quantification%20Using%20Deep%20Learning%20for%20Improved%20Parkinson's%20and%20Palliative%20Care%20Assessment&rft.jtitle=IEEE%20transactions%20on%20radar%20systems&rft.au=Mejdani,%20Desar&rft.date=2024&rft.volume=2&rft.spage=1174&rft.epage=1185&rft.pages=1174-1185&rft.issn=2832-7357&rft.eissn=2832-7357&rft.coden=ITRSBN&rft_id=info:doi/10.1109/TRS.2024.3494473&rft_dat=%3Ccrossref_RIE%3E10_1109_TRS_2024_3494473%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10747547&rfr_iscdi=true