Novel Contact Modeling for High Aspect Ratio Soft Robots
Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this articl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2023-06, Vol.39 (3), p.1-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on robotics |
container_volume | 39 |
creator | McDonald, Gillian J. Hamlen, Benjamin Detournay, Emmanuel Kowalewski, Timothy M. |
description | Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively. |
doi_str_mv | 10.1109/TRO.2023.3239134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2023_3239134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10041429</ieee_id><sourcerecordid>2823193309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9GO3nSMhKiYoCeK5KcsUlyDFdjHxv7cEDp7mJfPefPwYu-Uw4BzwYT6bDgQIOZBCIpfqjPU4Kl6Cqs151lUlSgloLtlVSmsAoRBkj5m38EObYhS2nWu64jUsadNuV4UPsRi3q89imHaUGzPXtaF4Dz7LsAhdumYX3m0S3Zxqn308Pc5H43IyfX4ZDSdlI4zuSkQNuODopPF-IataLZWDWsmaPEddu0arBpdag8GKjCJumny2cA51RR5ln90f5-5i-N5T6uw67OM2r7TCCMlR5q-yC46uJoaUInm7i-2Xi7-Wgz3wsZmPPfCxJz45cneMtET0zw6KK4HyD0uhXsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193309</pqid></control><display><type>article</type><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><source>IEEE Electronic Library (IEL)</source><creator>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</creator><creatorcontrib>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</creatorcontrib><description>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3239134</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Bending ; Computational modeling ; Computer vision ; Contact modeling ; Force ; Hencky bar chain ; High aspect ratio ; hydraulic/pneumatic actuators ; Modelling ; Robots ; Shape ; soft robot applications ; Soft robotics ; Torque</subject><ispartof>IEEE transactions on robotics, 2023-06, Vol.39 (3), p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</cites><orcidid>0000-0001-5889-3866 ; 0000-0001-6596-3324 ; 0000-0002-5217-3136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10041429$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>McDonald, Gillian J.</creatorcontrib><creatorcontrib>Hamlen, Benjamin</creatorcontrib><creatorcontrib>Detournay, Emmanuel</creatorcontrib><creatorcontrib>Kowalewski, Timothy M.</creatorcontrib><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Bending</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Contact modeling</subject><subject>Force</subject><subject>Hencky bar chain</subject><subject>High aspect ratio</subject><subject>hydraulic/pneumatic actuators</subject><subject>Modelling</subject><subject>Robots</subject><subject>Shape</subject><subject>soft robot applications</subject><subject>Soft robotics</subject><subject>Torque</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9GO3nSMhKiYoCeK5KcsUlyDFdjHxv7cEDp7mJfPefPwYu-Uw4BzwYT6bDgQIOZBCIpfqjPU4Kl6Cqs151lUlSgloLtlVSmsAoRBkj5m38EObYhS2nWu64jUsadNuV4UPsRi3q89imHaUGzPXtaF4Dz7LsAhdumYX3m0S3Zxqn308Pc5H43IyfX4ZDSdlI4zuSkQNuODopPF-IataLZWDWsmaPEddu0arBpdag8GKjCJumny2cA51RR5ln90f5-5i-N5T6uw67OM2r7TCCMlR5q-yC46uJoaUInm7i-2Xi7-Wgz3wsZmPPfCxJz45cneMtET0zw6KK4HyD0uhXsg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>McDonald, Gillian J.</creator><creator>Hamlen, Benjamin</creator><creator>Detournay, Emmanuel</creator><creator>Kowalewski, Timothy M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5889-3866</orcidid><orcidid>https://orcid.org/0000-0001-6596-3324</orcidid><orcidid>https://orcid.org/0000-0002-5217-3136</orcidid></search><sort><creationdate>20230601</creationdate><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><author>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Bending</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Contact modeling</topic><topic>Force</topic><topic>Hencky bar chain</topic><topic>High aspect ratio</topic><topic>hydraulic/pneumatic actuators</topic><topic>Modelling</topic><topic>Robots</topic><topic>Shape</topic><topic>soft robot applications</topic><topic>Soft robotics</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Gillian J.</creatorcontrib><creatorcontrib>Hamlen, Benjamin</creatorcontrib><creatorcontrib>Detournay, Emmanuel</creatorcontrib><creatorcontrib>Kowalewski, Timothy M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Gillian J.</au><au>Hamlen, Benjamin</au><au>Detournay, Emmanuel</au><au>Kowalewski, Timothy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Contact Modeling for High Aspect Ratio Soft Robots</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3239134</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5889-3866</orcidid><orcidid>https://orcid.org/0000-0001-6596-3324</orcidid><orcidid>https://orcid.org/0000-0002-5217-3136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2023-06, Vol.39 (3), p.1-19 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2023_3239134 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Algorithms Bending Computational modeling Computer vision Contact modeling Force Hencky bar chain High aspect ratio hydraulic/pneumatic actuators Modelling Robots Shape soft robot applications Soft robotics Torque |
title | Novel Contact Modeling for High Aspect Ratio Soft Robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Contact%20Modeling%20for%20High%20Aspect%20Ratio%20Soft%20Robots&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=McDonald,%20Gillian%20J.&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3239134&rft_dat=%3Cproquest_cross%3E2823193309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193309&rft_id=info:pmid/&rft_ieee_id=10041429&rfr_iscdi=true |