Novel Contact Modeling for High Aspect Ratio Soft Robots

Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this articl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-06, Vol.39 (3), p.1-19
Hauptverfasser: McDonald, Gillian J., Hamlen, Benjamin, Detournay, Emmanuel, Kowalewski, Timothy M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 3
container_start_page 1
container_title IEEE transactions on robotics
container_volume 39
creator McDonald, Gillian J.
Hamlen, Benjamin
Detournay, Emmanuel
Kowalewski, Timothy M.
description Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.
doi_str_mv 10.1109/TRO.2023.3239134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2023_3239134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10041429</ieee_id><sourcerecordid>2823193309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9GO3nSMhKiYoCeK5KcsUlyDFdjHxv7cEDp7mJfPefPwYu-Uw4BzwYT6bDgQIOZBCIpfqjPU4Kl6Cqs151lUlSgloLtlVSmsAoRBkj5m38EObYhS2nWu64jUsadNuV4UPsRi3q89imHaUGzPXtaF4Dz7LsAhdumYX3m0S3Zxqn308Pc5H43IyfX4ZDSdlI4zuSkQNuODopPF-IataLZWDWsmaPEddu0arBpdag8GKjCJumny2cA51RR5ln90f5-5i-N5T6uw67OM2r7TCCMlR5q-yC46uJoaUInm7i-2Xi7-Wgz3wsZmPPfCxJz45cneMtET0zw6KK4HyD0uhXsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193309</pqid></control><display><type>article</type><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><source>IEEE Electronic Library (IEL)</source><creator>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</creator><creatorcontrib>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</creatorcontrib><description>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3239134</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Bending ; Computational modeling ; Computer vision ; Contact modeling ; Force ; Hencky bar chain ; High aspect ratio ; hydraulic/pneumatic actuators ; Modelling ; Robots ; Shape ; soft robot applications ; Soft robotics ; Torque</subject><ispartof>IEEE transactions on robotics, 2023-06, Vol.39 (3), p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</cites><orcidid>0000-0001-5889-3866 ; 0000-0001-6596-3324 ; 0000-0002-5217-3136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10041429$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>McDonald, Gillian J.</creatorcontrib><creatorcontrib>Hamlen, Benjamin</creatorcontrib><creatorcontrib>Detournay, Emmanuel</creatorcontrib><creatorcontrib>Kowalewski, Timothy M.</creatorcontrib><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Bending</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Contact modeling</subject><subject>Force</subject><subject>Hencky bar chain</subject><subject>High aspect ratio</subject><subject>hydraulic/pneumatic actuators</subject><subject>Modelling</subject><subject>Robots</subject><subject>Shape</subject><subject>soft robot applications</subject><subject>Soft robotics</subject><subject>Torque</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9GO3nSMhKiYoCeK5KcsUlyDFdjHxv7cEDp7mJfPefPwYu-Uw4BzwYT6bDgQIOZBCIpfqjPU4Kl6Cqs151lUlSgloLtlVSmsAoRBkj5m38EObYhS2nWu64jUsadNuV4UPsRi3q89imHaUGzPXtaF4Dz7LsAhdumYX3m0S3Zxqn308Pc5H43IyfX4ZDSdlI4zuSkQNuODopPF-IataLZWDWsmaPEddu0arBpdag8GKjCJumny2cA51RR5ln90f5-5i-N5T6uw67OM2r7TCCMlR5q-yC46uJoaUInm7i-2Xi7-Wgz3wsZmPPfCxJz45cneMtET0zw6KK4HyD0uhXsg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>McDonald, Gillian J.</creator><creator>Hamlen, Benjamin</creator><creator>Detournay, Emmanuel</creator><creator>Kowalewski, Timothy M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5889-3866</orcidid><orcidid>https://orcid.org/0000-0001-6596-3324</orcidid><orcidid>https://orcid.org/0000-0002-5217-3136</orcidid></search><sort><creationdate>20230601</creationdate><title>Novel Contact Modeling for High Aspect Ratio Soft Robots</title><author>McDonald, Gillian J. ; Hamlen, Benjamin ; Detournay, Emmanuel ; Kowalewski, Timothy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-99709b19a38ffb3564d4a06436ef1976ac74c9d770895e84e18c9412aa975ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Bending</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Contact modeling</topic><topic>Force</topic><topic>Hencky bar chain</topic><topic>High aspect ratio</topic><topic>hydraulic/pneumatic actuators</topic><topic>Modelling</topic><topic>Robots</topic><topic>Shape</topic><topic>soft robot applications</topic><topic>Soft robotics</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Gillian J.</creatorcontrib><creatorcontrib>Hamlen, Benjamin</creatorcontrib><creatorcontrib>Detournay, Emmanuel</creatorcontrib><creatorcontrib>Kowalewski, Timothy M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Gillian J.</au><au>Hamlen, Benjamin</au><au>Detournay, Emmanuel</au><au>Kowalewski, Timothy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Contact Modeling for High Aspect Ratio Soft Robots</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Contact modeling between a soft robot and its environment is challenging due to soft robots' compliance and the difficulty of embedding sensors. Current modeling methods are computationally expensive and require highly accurate material characterization to produce useful results. In this article, we present a contact model that utilizes linear complementarity and Hencky bar-chain methods, and requires only static images to efficiently predict the interaction between actuator and environment. These methods have yet to be introduced to the soft robotics community for modeling robots that deform due to eigenstrains or strains not caused by external forces. We validated our model using a custom experimental setup and computer vision algorithm on 3-mm OD, 90-mm long, tube-like actuators. Our results indicated a 1.06% difference in shape between model and experiment, with computation times in 10 s of ms-three to four orders of magnitude faster than nonlinear gradient descent. Additionally, the error in interaction forces between the model and experiment decreased as pressure increased, with an average error magnitude of 45% and 21% for pressures at the low and high ends of the tested range, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3239134</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5889-3866</orcidid><orcidid>https://orcid.org/0000-0001-6596-3324</orcidid><orcidid>https://orcid.org/0000-0002-5217-3136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-06, Vol.39 (3), p.1-19
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2023_3239134
source IEEE Electronic Library (IEL)
subjects Actuators
Algorithms
Bending
Computational modeling
Computer vision
Contact modeling
Force
Hencky bar chain
High aspect ratio
hydraulic/pneumatic actuators
Modelling
Robots
Shape
soft robot applications
Soft robotics
Torque
title Novel Contact Modeling for High Aspect Ratio Soft Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Contact%20Modeling%20for%20High%20Aspect%20Ratio%20Soft%20Robots&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=McDonald,%20Gillian%20J.&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3239134&rft_dat=%3Cproquest_cross%3E2823193309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193309&rft_id=info:pmid/&rft_ieee_id=10041429&rfr_iscdi=true