Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments

Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2022-08, Vol.38 (4), p.2481-2494
Hauptverfasser: Kyaw, Phone Thiha, Le, Anh Vu, Veerajagadheswar, Prabakaran, Elara, Mohan Rajesh, Thu, Theint Theint, Nhan, Nguyen Huu Khanh, Van Duc, Phan, Vu, Minh Bui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2494
container_issue 4
container_start_page 2481
container_title IEEE transactions on robotics
container_volume 38
creator Kyaw, Phone Thiha
Le, Anh Vu
Veerajagadheswar, Prabakaran
Elara, Mohan Rajesh
Thu, Theint Theint
Nhan, Nguyen Huu Khanh
Van Duc, Phan
Vu, Minh Bui
description Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an L^2 greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.
doi_str_mv 10.1109/TRO.2022.3147408
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2022_3147408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9716740</ieee_id><sourcerecordid>2698828224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zUyylDJWodBS6jokmUxNmSY1mYr996a0uHoX3rnvwQHgEaMJxki8rFeLCUGETChmNUP8CoywYLhArOLXOZclKSgS_BbcpbRFiDCB6AgsGm_j5lg0XeeMs36ASzV8wWWvvHd-A0MHV9YE37nNISrdW7gKOgwJOg-nYbfv7S9s_I-Lwe9yO92Dm071yT5c5hh8vjXr6XsxX8w-pq_zwhCBh6KuW85bI5AiraKm0qVWpBS8VQTbmgilaY1K3NbaKFYRbJihQpdUZyDzJR2D5_PdfQzfB5sGuQ2H6PNLSSrBOeGEsEyhM2ViSCnaTu6j26l4lBjJkzaZtcmTNnnRlitP54qz1v7josZVXtM_MCppIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698828224</pqid></control><display><type>article</type><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</creator><creatorcontrib>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</creatorcontrib><description>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;L^2&lt;/tex-math&gt;&lt;/inline-formula&gt; greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3147408</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batch informed trees (BIT) ; Collision avoidance ; Costs ; Energy ; Energy costs ; energy efficient ; informed sampling ; Mobile robots ; Navigation ; optimal path planning ; Path planning ; Planning ; reconfigurable robotic ; Reconfiguration ; Robots ; Sampling methods</subject><ispartof>IEEE transactions on robotics, 2022-08, Vol.38 (4), p.2481-2494</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</citedby><cites>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</cites><orcidid>0000-0003-0222-166X ; 0000-0001-8790-8350 ; 0000-0002-7347-7446 ; 0000-0003-4470-5160 ; 0000-0001-6504-1530 ; 0000-0002-4804-7540 ; 0000-0002-5612-2619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9716740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9716740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyaw, Phone Thiha</creatorcontrib><creatorcontrib>Le, Anh Vu</creatorcontrib><creatorcontrib>Veerajagadheswar, Prabakaran</creatorcontrib><creatorcontrib>Elara, Mohan Rajesh</creatorcontrib><creatorcontrib>Thu, Theint Theint</creatorcontrib><creatorcontrib>Nhan, Nguyen Huu Khanh</creatorcontrib><creatorcontrib>Van Duc, Phan</creatorcontrib><creatorcontrib>Vu, Minh Bui</creatorcontrib><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;L^2&lt;/tex-math&gt;&lt;/inline-formula&gt; greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</description><subject>Algorithms</subject><subject>Batch informed trees (BIT)</subject><subject>Collision avoidance</subject><subject>Costs</subject><subject>Energy</subject><subject>Energy costs</subject><subject>energy efficient</subject><subject>informed sampling</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>optimal path planning</subject><subject>Path planning</subject><subject>Planning</subject><subject>reconfigurable robotic</subject><subject>Reconfiguration</subject><subject>Robots</subject><subject>Sampling methods</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zUyylDJWodBS6jokmUxNmSY1mYr996a0uHoX3rnvwQHgEaMJxki8rFeLCUGETChmNUP8CoywYLhArOLXOZclKSgS_BbcpbRFiDCB6AgsGm_j5lg0XeeMs36ASzV8wWWvvHd-A0MHV9YE37nNISrdW7gKOgwJOg-nYbfv7S9s_I-Lwe9yO92Dm071yT5c5hh8vjXr6XsxX8w-pq_zwhCBh6KuW85bI5AiraKm0qVWpBS8VQTbmgilaY1K3NbaKFYRbJihQpdUZyDzJR2D5_PdfQzfB5sGuQ2H6PNLSSrBOeGEsEyhM2ViSCnaTu6j26l4lBjJkzaZtcmTNnnRlitP54qz1v7josZVXtM_MCppIw</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kyaw, Phone Thiha</creator><creator>Le, Anh Vu</creator><creator>Veerajagadheswar, Prabakaran</creator><creator>Elara, Mohan Rajesh</creator><creator>Thu, Theint Theint</creator><creator>Nhan, Nguyen Huu Khanh</creator><creator>Van Duc, Phan</creator><creator>Vu, Minh Bui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0222-166X</orcidid><orcidid>https://orcid.org/0000-0001-8790-8350</orcidid><orcidid>https://orcid.org/0000-0002-7347-7446</orcidid><orcidid>https://orcid.org/0000-0003-4470-5160</orcidid><orcidid>https://orcid.org/0000-0001-6504-1530</orcidid><orcidid>https://orcid.org/0000-0002-4804-7540</orcidid><orcidid>https://orcid.org/0000-0002-5612-2619</orcidid></search><sort><creationdate>202208</creationdate><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><author>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batch informed trees (BIT)</topic><topic>Collision avoidance</topic><topic>Costs</topic><topic>Energy</topic><topic>Energy costs</topic><topic>energy efficient</topic><topic>informed sampling</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>optimal path planning</topic><topic>Path planning</topic><topic>Planning</topic><topic>reconfigurable robotic</topic><topic>Reconfiguration</topic><topic>Robots</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyaw, Phone Thiha</creatorcontrib><creatorcontrib>Le, Anh Vu</creatorcontrib><creatorcontrib>Veerajagadheswar, Prabakaran</creatorcontrib><creatorcontrib>Elara, Mohan Rajesh</creatorcontrib><creatorcontrib>Thu, Theint Theint</creatorcontrib><creatorcontrib>Nhan, Nguyen Huu Khanh</creatorcontrib><creatorcontrib>Van Duc, Phan</creatorcontrib><creatorcontrib>Vu, Minh Bui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyaw, Phone Thiha</au><au>Le, Anh Vu</au><au>Veerajagadheswar, Prabakaran</au><au>Elara, Mohan Rajesh</au><au>Thu, Theint Theint</au><au>Nhan, Nguyen Huu Khanh</au><au>Van Duc, Phan</au><au>Vu, Minh Bui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-08</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>2481</spage><epage>2494</epage><pages>2481-2494</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;L^2&lt;/tex-math&gt;&lt;/inline-formula&gt; greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3147408</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0222-166X</orcidid><orcidid>https://orcid.org/0000-0001-8790-8350</orcidid><orcidid>https://orcid.org/0000-0002-7347-7446</orcidid><orcidid>https://orcid.org/0000-0003-4470-5160</orcidid><orcidid>https://orcid.org/0000-0001-6504-1530</orcidid><orcidid>https://orcid.org/0000-0002-4804-7540</orcidid><orcidid>https://orcid.org/0000-0002-5612-2619</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2022-08, Vol.38 (4), p.2481-2494
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2022_3147408
source IEEE Electronic Library (IEL)
subjects Algorithms
Batch informed trees (BIT)
Collision avoidance
Costs
Energy
Energy costs
energy efficient
informed sampling
Mobile robots
Navigation
optimal path planning
Path planning
Planning
reconfigurable robotic
Reconfiguration
Robots
Sampling methods
title Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Path%20Planning%20of%20Reconfigurable%20Robots%20in%20Complex%20Environments&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Kyaw,%20Phone%20Thiha&rft.date=2022-08&rft.volume=38&rft.issue=4&rft.spage=2481&rft.epage=2494&rft.pages=2481-2494&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3147408&rft_dat=%3Cproquest_RIE%3E2698828224%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698828224&rft_id=info:pmid/&rft_ieee_id=9716740&rfr_iscdi=true