Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments
Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2022-08, Vol.38 (4), p.2481-2494 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2494 |
---|---|
container_issue | 4 |
container_start_page | 2481 |
container_title | IEEE transactions on robotics |
container_volume | 38 |
creator | Kyaw, Phone Thiha Le, Anh Vu Veerajagadheswar, Prabakaran Elara, Mohan Rajesh Thu, Theint Theint Nhan, Nguyen Huu Khanh Van Duc, Phan Vu, Minh Bui |
description | Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an L^2 greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments. |
doi_str_mv | 10.1109/TRO.2022.3147408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2022_3147408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9716740</ieee_id><sourcerecordid>2698828224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zUyylDJWodBS6jokmUxNmSY1mYr996a0uHoX3rnvwQHgEaMJxki8rFeLCUGETChmNUP8CoywYLhArOLXOZclKSgS_BbcpbRFiDCB6AgsGm_j5lg0XeeMs36ASzV8wWWvvHd-A0MHV9YE37nNISrdW7gKOgwJOg-nYbfv7S9s_I-Lwe9yO92Dm071yT5c5hh8vjXr6XsxX8w-pq_zwhCBh6KuW85bI5AiraKm0qVWpBS8VQTbmgilaY1K3NbaKFYRbJihQpdUZyDzJR2D5_PdfQzfB5sGuQ2H6PNLSSrBOeGEsEyhM2ViSCnaTu6j26l4lBjJkzaZtcmTNnnRlitP54qz1v7josZVXtM_MCppIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698828224</pqid></control><display><type>article</type><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</creator><creatorcontrib>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</creatorcontrib><description>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3147408</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batch informed trees (BIT) ; Collision avoidance ; Costs ; Energy ; Energy costs ; energy efficient ; informed sampling ; Mobile robots ; Navigation ; optimal path planning ; Path planning ; Planning ; reconfigurable robotic ; Reconfiguration ; Robots ; Sampling methods</subject><ispartof>IEEE transactions on robotics, 2022-08, Vol.38 (4), p.2481-2494</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</citedby><cites>FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</cites><orcidid>0000-0003-0222-166X ; 0000-0001-8790-8350 ; 0000-0002-7347-7446 ; 0000-0003-4470-5160 ; 0000-0001-6504-1530 ; 0000-0002-4804-7540 ; 0000-0002-5612-2619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9716740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9716740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyaw, Phone Thiha</creatorcontrib><creatorcontrib>Le, Anh Vu</creatorcontrib><creatorcontrib>Veerajagadheswar, Prabakaran</creatorcontrib><creatorcontrib>Elara, Mohan Rajesh</creatorcontrib><creatorcontrib>Thu, Theint Theint</creatorcontrib><creatorcontrib>Nhan, Nguyen Huu Khanh</creatorcontrib><creatorcontrib>Van Duc, Phan</creatorcontrib><creatorcontrib>Vu, Minh Bui</creatorcontrib><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</description><subject>Algorithms</subject><subject>Batch informed trees (BIT)</subject><subject>Collision avoidance</subject><subject>Costs</subject><subject>Energy</subject><subject>Energy costs</subject><subject>energy efficient</subject><subject>informed sampling</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>optimal path planning</subject><subject>Path planning</subject><subject>Planning</subject><subject>reconfigurable robotic</subject><subject>Reconfiguration</subject><subject>Robots</subject><subject>Sampling methods</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zUyylDJWodBS6jokmUxNmSY1mYr996a0uHoX3rnvwQHgEaMJxki8rFeLCUGETChmNUP8CoywYLhArOLXOZclKSgS_BbcpbRFiDCB6AgsGm_j5lg0XeeMs36ASzV8wWWvvHd-A0MHV9YE37nNISrdW7gKOgwJOg-nYbfv7S9s_I-Lwe9yO92Dm071yT5c5hh8vjXr6XsxX8w-pq_zwhCBh6KuW85bI5AiraKm0qVWpBS8VQTbmgilaY1K3NbaKFYRbJihQpdUZyDzJR2D5_PdfQzfB5sGuQ2H6PNLSSrBOeGEsEyhM2ViSCnaTu6j26l4lBjJkzaZtcmTNnnRlitP54qz1v7josZVXtM_MCppIw</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kyaw, Phone Thiha</creator><creator>Le, Anh Vu</creator><creator>Veerajagadheswar, Prabakaran</creator><creator>Elara, Mohan Rajesh</creator><creator>Thu, Theint Theint</creator><creator>Nhan, Nguyen Huu Khanh</creator><creator>Van Duc, Phan</creator><creator>Vu, Minh Bui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0222-166X</orcidid><orcidid>https://orcid.org/0000-0001-8790-8350</orcidid><orcidid>https://orcid.org/0000-0002-7347-7446</orcidid><orcidid>https://orcid.org/0000-0003-4470-5160</orcidid><orcidid>https://orcid.org/0000-0001-6504-1530</orcidid><orcidid>https://orcid.org/0000-0002-4804-7540</orcidid><orcidid>https://orcid.org/0000-0002-5612-2619</orcidid></search><sort><creationdate>202208</creationdate><title>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</title><author>Kyaw, Phone Thiha ; Le, Anh Vu ; Veerajagadheswar, Prabakaran ; Elara, Mohan Rajesh ; Thu, Theint Theint ; Nhan, Nguyen Huu Khanh ; Van Duc, Phan ; Vu, Minh Bui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77d88dc90a2da3c6b5ba2598da21e729ab37051d7bca4621c4c39b53bda2a3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batch informed trees (BIT)</topic><topic>Collision avoidance</topic><topic>Costs</topic><topic>Energy</topic><topic>Energy costs</topic><topic>energy efficient</topic><topic>informed sampling</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>optimal path planning</topic><topic>Path planning</topic><topic>Planning</topic><topic>reconfigurable robotic</topic><topic>Reconfiguration</topic><topic>Robots</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyaw, Phone Thiha</creatorcontrib><creatorcontrib>Le, Anh Vu</creatorcontrib><creatorcontrib>Veerajagadheswar, Prabakaran</creatorcontrib><creatorcontrib>Elara, Mohan Rajesh</creatorcontrib><creatorcontrib>Thu, Theint Theint</creatorcontrib><creatorcontrib>Nhan, Nguyen Huu Khanh</creatorcontrib><creatorcontrib>Van Duc, Phan</creatorcontrib><creatorcontrib>Vu, Minh Bui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyaw, Phone Thiha</au><au>Le, Anh Vu</au><au>Veerajagadheswar, Prabakaran</au><au>Elara, Mohan Rajesh</au><au>Thu, Theint Theint</au><au>Nhan, Nguyen Huu Khanh</au><au>Van Duc, Phan</au><au>Vu, Minh Bui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-08</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>2481</spage><epage>2494</epage><pages>2481-2494</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Planning the energy-efficient and collision-free paths for reconfigurable robots in complex environments is more challenging than conventional fixed-shaped robots due to their flexible degrees of freedom while navigating through tight spaces. This article presents a novel algorithm, energy-efficient batch informed trees* (BIT*) for reconfigurable robots, which incorporates BIT*, an informed, anytime sampling-based planner, with the energy-based objectives that consider the energy cost for robot's each reconfigurable action. Moreover, it proposes to improve the direct sampling technique of informed RRT* by defining an <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> greedy informed set that shrinks as a function of the state with the maximum admissible estimated cost instead of shrinking as a function of the current solution, thereby improving the convergence rate of the algorithm. Experiments were conducted on a tetromino hinged-based reconfigurable robot as a case study to validate our proposed path planning technique. The outcome of our trials shows that the proposed approach produces energy-efficient solution paths, and outperforms existing techniques on simulated and real-world experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3147408</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0222-166X</orcidid><orcidid>https://orcid.org/0000-0001-8790-8350</orcidid><orcidid>https://orcid.org/0000-0002-7347-7446</orcidid><orcidid>https://orcid.org/0000-0003-4470-5160</orcidid><orcidid>https://orcid.org/0000-0001-6504-1530</orcidid><orcidid>https://orcid.org/0000-0002-4804-7540</orcidid><orcidid>https://orcid.org/0000-0002-5612-2619</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2022-08, Vol.38 (4), p.2481-2494 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2022_3147408 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batch informed trees (BIT) Collision avoidance Costs Energy Energy costs energy efficient informed sampling Mobile robots Navigation optimal path planning Path planning Planning reconfigurable robotic Reconfiguration Robots Sampling methods |
title | Energy-Efficient Path Planning of Reconfigurable Robots in Complex Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Path%20Planning%20of%20Reconfigurable%20Robots%20in%20Complex%20Environments&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Kyaw,%20Phone%20Thiha&rft.date=2022-08&rft.volume=38&rft.issue=4&rft.spage=2481&rft.epage=2494&rft.pages=2481-2494&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3147408&rft_dat=%3Cproquest_RIE%3E2698828224%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698828224&rft_id=info:pmid/&rft_ieee_id=9716740&rfr_iscdi=true |