Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots

Continuum and soft robots can leverage complex actuator shapes to take onuseful shapes while actuating only a few of their many degrees of freedom. Continuum robotsthat alsogrow increasethe range of potential shapes that can be actuated and enable easier access to constrained environments. Existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2022-06, Vol.38 (3), p.1820-1840
Hauptverfasser: Blumenschein, Laura H., Koehler, Margaret, Usevitch, Nathan S., Hawkes, Elliot Wright, Rucker, D. Caleb, Okamura, Allison M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1840
container_issue 3
container_start_page 1820
container_title IEEE transactions on robotics
container_volume 38
creator Blumenschein, Laura H.
Koehler, Margaret
Usevitch, Nathan S.
Hawkes, Elliot Wright
Rucker, D. Caleb
Okamura, Allison M.
description Continuum and soft robots can leverage complex actuator shapes to take onuseful shapes while actuating only a few of their many degrees of freedom. Continuum robotsthat alsogrow increasethe range of potential shapes that can be actuated and enable easier access to constrained environments. Existing models for describing the complex kinematics involved in general actuation of continuum robots rely on simulation or well-behaved stress-strain relationships, but the nonlinear behavior of the thin-walled inflated-beams used in growing robots makes these techniques difficult to apply. Here, we derive kinematic models of single, generally routed tendon paths on a soft pneumatic backbone of inextensible but flexible material from geometric relationships alone. This allows for forward modeling of the resulting shapes with only knowledge of the geometry of the system. We show that this model can accurately predict the shape of the whole robot body and how the model changes with actuation type. We also demonstrate the use of this kinematic model for inverse design, where actuator designs are found based on desired final robot shapes. We deploy these designed actuators on soft pneumatic growing robots to show the benefits of simultaneous growth and shape change.
doi_str_mv 10.1109/TRO.2021.3115230
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2021_3115230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583670</ieee_id><sourcerecordid>2674075106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f638cff6c240e0f0095f6dd701a953ea6c511af9350f434bff60f27fa17ef5333</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8FnzsvSZM2j3NoHQwGc3sOWZeTjq6ZSYr435ux4dMdd9_vDj5CHilMKAX1sl4tJwwYnXBKBeNwRUZUFTSHQlbXqReC5RxUdUvuQtgDsEIBH5FNbd3BRt822afrhti6PmTofFbb3nrTZdMmDiamwcqlbf-VuT6b99iZaHf5qzWHlMOY1d79nLYrt3Ux3JMbNF2wD5c6Jpv3t_XsI18s6_lsusgbzquYo-RVgygbVoAFBFAC5W5XAjVKcGtkIyg1qLgALHixTSggK9HQ0qLgnI_J8_nu0bvvwYao927wfXqpmSwLKAUFmSg4U413IXiL-ujbg_G_moI-ydNJnj7J0xd5KfJ0jrTW2n9ciYrLEvgfqe1qoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674075106</pqid></control><display><type>article</type><title>Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Blumenschein, Laura H. ; Koehler, Margaret ; Usevitch, Nathan S. ; Hawkes, Elliot Wright ; Rucker, D. Caleb ; Okamura, Allison M.</creator><creatorcontrib>Blumenschein, Laura H. ; Koehler, Margaret ; Usevitch, Nathan S. ; Hawkes, Elliot Wright ; Rucker, D. Caleb ; Okamura, Allison M.</creatorcontrib><description>Continuum and soft robots can leverage complex actuator shapes to take onuseful shapes while actuating only a few of their many degrees of freedom. Continuum robotsthat alsogrow increasethe range of potential shapes that can be actuated and enable easier access to constrained environments. Existing models for describing the complex kinematics involved in general actuation of continuum robots rely on simulation or well-behaved stress-strain relationships, but the nonlinear behavior of the thin-walled inflated-beams used in growing robots makes these techniques difficult to apply. Here, we derive kinematic models of single, generally routed tendon paths on a soft pneumatic backbone of inextensible but flexible material from geometric relationships alone. This allows for forward modeling of the resulting shapes with only knowledge of the geometry of the system. We show that this model can accurately predict the shape of the whole robot body and how the model changes with actuation type. We also demonstrate the use of this kinematic model for inverse design, where actuator designs are found based on desired final robot shapes. We deploy these designed actuators on soft pneumatic growing robots to show the benefits of simultaneous growth and shape change.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2021.3115230</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Actuators ; Design ; Electron tubes ; Environment models ; Growing robots ; Inverse design ; Kinematics ; Pneumatic systems ; Robots ; Shape ; soft robot materials and design ; Soft robotics ; soft sensors and actuators ; Stress-strain relationships ; Tendons</subject><ispartof>IEEE transactions on robotics, 2022-06, Vol.38 (3), p.1820-1840</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f638cff6c240e0f0095f6dd701a953ea6c511af9350f434bff60f27fa17ef5333</citedby><cites>FETCH-LOGICAL-c338t-f638cff6c240e0f0095f6dd701a953ea6c511af9350f434bff60f27fa17ef5333</cites><orcidid>0000-0003-0658-5364 ; 0000-0002-0420-5025 ; 0000-0003-1359-5456 ; 0000-0002-6912-1666 ; 0000-0002-2199-3334 ; 0000-0001-7181-1933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583670$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9583670$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Koehler, Margaret</creatorcontrib><creatorcontrib>Usevitch, Nathan S.</creatorcontrib><creatorcontrib>Hawkes, Elliot Wright</creatorcontrib><creatorcontrib>Rucker, D. Caleb</creatorcontrib><creatorcontrib>Okamura, Allison M.</creatorcontrib><title>Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Continuum and soft robots can leverage complex actuator shapes to take onuseful shapes while actuating only a few of their many degrees of freedom. Continuum robotsthat alsogrow increasethe range of potential shapes that can be actuated and enable easier access to constrained environments. Existing models for describing the complex kinematics involved in general actuation of continuum robots rely on simulation or well-behaved stress-strain relationships, but the nonlinear behavior of the thin-walled inflated-beams used in growing robots makes these techniques difficult to apply. Here, we derive kinematic models of single, generally routed tendon paths on a soft pneumatic backbone of inextensible but flexible material from geometric relationships alone. This allows for forward modeling of the resulting shapes with only knowledge of the geometry of the system. We show that this model can accurately predict the shape of the whole robot body and how the model changes with actuation type. We also demonstrate the use of this kinematic model for inverse design, where actuator designs are found based on desired final robot shapes. We deploy these designed actuators on soft pneumatic growing robots to show the benefits of simultaneous growth and shape change.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Design</subject><subject>Electron tubes</subject><subject>Environment models</subject><subject>Growing robots</subject><subject>Inverse design</subject><subject>Kinematics</subject><subject>Pneumatic systems</subject><subject>Robots</subject><subject>Shape</subject><subject>soft robot materials and design</subject><subject>Soft robotics</subject><subject>soft sensors and actuators</subject><subject>Stress-strain relationships</subject><subject>Tendons</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKfvgi8FnzsvSZM2j3NoHQwGc3sOWZeTjq6ZSYr435ux4dMdd9_vDj5CHilMKAX1sl4tJwwYnXBKBeNwRUZUFTSHQlbXqReC5RxUdUvuQtgDsEIBH5FNbd3BRt822afrhti6PmTofFbb3nrTZdMmDiamwcqlbf-VuT6b99iZaHf5qzWHlMOY1d79nLYrt3Ux3JMbNF2wD5c6Jpv3t_XsI18s6_lsusgbzquYo-RVgygbVoAFBFAC5W5XAjVKcGtkIyg1qLgALHixTSggK9HQ0qLgnI_J8_nu0bvvwYao927wfXqpmSwLKAUFmSg4U413IXiL-ujbg_G_moI-ydNJnj7J0xd5KfJ0jrTW2n9ciYrLEvgfqe1qoA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Blumenschein, Laura H.</creator><creator>Koehler, Margaret</creator><creator>Usevitch, Nathan S.</creator><creator>Hawkes, Elliot Wright</creator><creator>Rucker, D. Caleb</creator><creator>Okamura, Allison M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0658-5364</orcidid><orcidid>https://orcid.org/0000-0002-0420-5025</orcidid><orcidid>https://orcid.org/0000-0003-1359-5456</orcidid><orcidid>https://orcid.org/0000-0002-6912-1666</orcidid><orcidid>https://orcid.org/0000-0002-2199-3334</orcidid><orcidid>https://orcid.org/0000-0001-7181-1933</orcidid></search><sort><creationdate>202206</creationdate><title>Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots</title><author>Blumenschein, Laura H. ; Koehler, Margaret ; Usevitch, Nathan S. ; Hawkes, Elliot Wright ; Rucker, D. Caleb ; Okamura, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f638cff6c240e0f0095f6dd701a953ea6c511af9350f434bff60f27fa17ef5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Design</topic><topic>Electron tubes</topic><topic>Environment models</topic><topic>Growing robots</topic><topic>Inverse design</topic><topic>Kinematics</topic><topic>Pneumatic systems</topic><topic>Robots</topic><topic>Shape</topic><topic>soft robot materials and design</topic><topic>Soft robotics</topic><topic>soft sensors and actuators</topic><topic>Stress-strain relationships</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Koehler, Margaret</creatorcontrib><creatorcontrib>Usevitch, Nathan S.</creatorcontrib><creatorcontrib>Hawkes, Elliot Wright</creatorcontrib><creatorcontrib>Rucker, D. Caleb</creatorcontrib><creatorcontrib>Okamura, Allison M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blumenschein, Laura H.</au><au>Koehler, Margaret</au><au>Usevitch, Nathan S.</au><au>Hawkes, Elliot Wright</au><au>Rucker, D. Caleb</au><au>Okamura, Allison M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-06</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>1820</spage><epage>1840</epage><pages>1820-1840</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Continuum and soft robots can leverage complex actuator shapes to take onuseful shapes while actuating only a few of their many degrees of freedom. Continuum robotsthat alsogrow increasethe range of potential shapes that can be actuated and enable easier access to constrained environments. Existing models for describing the complex kinematics involved in general actuation of continuum robots rely on simulation or well-behaved stress-strain relationships, but the nonlinear behavior of the thin-walled inflated-beams used in growing robots makes these techniques difficult to apply. Here, we derive kinematic models of single, generally routed tendon paths on a soft pneumatic backbone of inextensible but flexible material from geometric relationships alone. This allows for forward modeling of the resulting shapes with only knowledge of the geometry of the system. We show that this model can accurately predict the shape of the whole robot body and how the model changes with actuation type. We also demonstrate the use of this kinematic model for inverse design, where actuator designs are found based on desired final robot shapes. We deploy these designed actuators on soft pneumatic growing robots to show the benefits of simultaneous growth and shape change.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2021.3115230</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0658-5364</orcidid><orcidid>https://orcid.org/0000-0002-0420-5025</orcidid><orcidid>https://orcid.org/0000-0003-1359-5456</orcidid><orcidid>https://orcid.org/0000-0002-6912-1666</orcidid><orcidid>https://orcid.org/0000-0002-2199-3334</orcidid><orcidid>https://orcid.org/0000-0001-7181-1933</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2022-06, Vol.38 (3), p.1820-1840
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2021_3115230
source IEEE Electronic Library (IEL)
subjects Actuation
Actuators
Design
Electron tubes
Environment models
Growing robots
Inverse design
Kinematics
Pneumatic systems
Robots
Shape
soft robot materials and design
Soft robotics
soft sensors and actuators
Stress-strain relationships
Tendons
title Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Solutions%20for%20General%20Actuator%20Routing%20on%20Inflated-Beam%20Soft%20Growing%20Robots&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Blumenschein,%20Laura%20H.&rft.date=2022-06&rft.volume=38&rft.issue=3&rft.spage=1820&rft.epage=1840&rft.pages=1820-1840&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2021.3115230&rft_dat=%3Cproquest_RIE%3E2674075106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674075106&rft_id=info:pmid/&rft_ieee_id=9583670&rfr_iscdi=true