Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2015-06, Vol.31 (3), p.536-545 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 3 |
container_start_page | 536 |
container_title | IEEE transactions on robotics |
container_volume | 31 |
creator | Bishop-Moser, Joshua Kota, Sridhar |
description | Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles. |
doi_str_mv | 10.1109/TRO.2015.2409452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2015_2409452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7114309</ieee_id><sourcerecordid>3716447641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSsEEmNwR-JSiXOHnaRtepwGG0hDQ2Ocqyxxpk5bM5L2AL-eTJs42bLes5-_JLlHGCFC9bRaLkYMMB8xAZXI2UUywEpgBqKQl7HPc5ZxqOR1chPCFoCJCvggmT9TaDZtqlqTvjtDu6bdpM6mM2rJq13zSyadNmvy2ZKa1jqv4-CjpX6vukann8526Vh3veqcD7fJlVW7QHfnOky-pi-ryWs2X8zeJuN5pjmXXWZLw_J1DEAgVAmi1MRA2lIYYwsUCiUrDSCSznM0TJbKlFJXqFSu4oeaD5PH096Dd989ha7eut638WSNhZQF5xwwquCk0t6F4MnWB9_slf-pEeojszoyq4_M6jOzaHk4WRoi-peXiCKi43_Xu2bK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688633301</pqid></control><display><type>article</type><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Bishop-Moser, Joshua ; Kota, Sridhar</creator><creatorcontrib>Bishop-Moser, Joshua ; Kota, Sridhar</creatorcontrib><description>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2015.2409452</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Biologically inspired robots ; Deformation ; Design ; Elastomers ; Fasteners ; flexible arms ; Force ; Kinematics ; Mathematical model ; Motors ; Pneumatics ; redundant robots ; Robots ; smart actuators ; Trajectory ; underactuated robots</subject><ispartof>IEEE transactions on robotics, 2015-06, Vol.31 (3), p.536-545</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</citedby><cites>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7114309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7114309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bishop-Moser, Joshua</creatorcontrib><creatorcontrib>Kota, Sridhar</creatorcontrib><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</description><subject>Actuators</subject><subject>Biologically inspired robots</subject><subject>Deformation</subject><subject>Design</subject><subject>Elastomers</subject><subject>Fasteners</subject><subject>flexible arms</subject><subject>Force</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Motors</subject><subject>Pneumatics</subject><subject>redundant robots</subject><subject>Robots</subject><subject>smart actuators</subject><subject>Trajectory</subject><subject>underactuated robots</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSsEEmNwR-JSiXOHnaRtepwGG0hDQ2Ocqyxxpk5bM5L2AL-eTJs42bLes5-_JLlHGCFC9bRaLkYMMB8xAZXI2UUywEpgBqKQl7HPc5ZxqOR1chPCFoCJCvggmT9TaDZtqlqTvjtDu6bdpM6mM2rJq13zSyadNmvy2ZKa1jqv4-CjpX6vukann8526Vh3veqcD7fJlVW7QHfnOky-pi-ryWs2X8zeJuN5pjmXXWZLw_J1DEAgVAmi1MRA2lIYYwsUCiUrDSCSznM0TJbKlFJXqFSu4oeaD5PH096Dd989ha7eut638WSNhZQF5xwwquCk0t6F4MnWB9_slf-pEeojszoyq4_M6jOzaHk4WRoi-peXiCKi43_Xu2bK</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Bishop-Moser, Joshua</creator><creator>Kota, Sridhar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201506</creationdate><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><author>Bishop-Moser, Joshua ; Kota, Sridhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actuators</topic><topic>Biologically inspired robots</topic><topic>Deformation</topic><topic>Design</topic><topic>Elastomers</topic><topic>Fasteners</topic><topic>flexible arms</topic><topic>Force</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Motors</topic><topic>Pneumatics</topic><topic>redundant robots</topic><topic>Robots</topic><topic>smart actuators</topic><topic>Trajectory</topic><topic>underactuated robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishop-Moser, Joshua</creatorcontrib><creatorcontrib>Kota, Sridhar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bishop-Moser, Joshua</au><au>Kota, Sridhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2015-06</date><risdate>2015</risdate><volume>31</volume><issue>3</issue><spage>536</spage><epage>545</epage><pages>536-545</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2015.2409452</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2015-06, Vol.31 (3), p.536-545 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2015_2409452 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Biologically inspired robots Deformation Design Elastomers Fasteners flexible arms Force Kinematics Mathematical model Motors Pneumatics redundant robots Robots smart actuators Trajectory underactuated robots |
title | Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Modeling%20of%20Generalized%20Fiber-Reinforced%20Pneumatic%20Soft%20Actuators&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Bishop-Moser,%20Joshua&rft.date=2015-06&rft.volume=31&rft.issue=3&rft.spage=536&rft.epage=545&rft.pages=536-545&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2015.2409452&rft_dat=%3Cproquest_RIE%3E3716447641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688633301&rft_id=info:pmid/&rft_ieee_id=7114309&rfr_iscdi=true |