Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators

Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2015-06, Vol.31 (3), p.536-545
Hauptverfasser: Bishop-Moser, Joshua, Kota, Sridhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 3
container_start_page 536
container_title IEEE transactions on robotics
container_volume 31
creator Bishop-Moser, Joshua
Kota, Sridhar
description Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.
doi_str_mv 10.1109/TRO.2015.2409452
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2015_2409452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7114309</ieee_id><sourcerecordid>3716447641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSsEEmNwR-JSiXOHnaRtepwGG0hDQ2Ocqyxxpk5bM5L2AL-eTJs42bLes5-_JLlHGCFC9bRaLkYMMB8xAZXI2UUywEpgBqKQl7HPc5ZxqOR1chPCFoCJCvggmT9TaDZtqlqTvjtDu6bdpM6mM2rJq13zSyadNmvy2ZKa1jqv4-CjpX6vukann8526Vh3veqcD7fJlVW7QHfnOky-pi-ryWs2X8zeJuN5pjmXXWZLw_J1DEAgVAmi1MRA2lIYYwsUCiUrDSCSznM0TJbKlFJXqFSu4oeaD5PH096Dd989ha7eut638WSNhZQF5xwwquCk0t6F4MnWB9_slf-pEeojszoyq4_M6jOzaHk4WRoi-peXiCKi43_Xu2bK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688633301</pqid></control><display><type>article</type><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Bishop-Moser, Joshua ; Kota, Sridhar</creator><creatorcontrib>Bishop-Moser, Joshua ; Kota, Sridhar</creatorcontrib><description>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2015.2409452</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Biologically inspired robots ; Deformation ; Design ; Elastomers ; Fasteners ; flexible arms ; Force ; Kinematics ; Mathematical model ; Motors ; Pneumatics ; redundant robots ; Robots ; smart actuators ; Trajectory ; underactuated robots</subject><ispartof>IEEE transactions on robotics, 2015-06, Vol.31 (3), p.536-545</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</citedby><cites>FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7114309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7114309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bishop-Moser, Joshua</creatorcontrib><creatorcontrib>Kota, Sridhar</creatorcontrib><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</description><subject>Actuators</subject><subject>Biologically inspired robots</subject><subject>Deformation</subject><subject>Design</subject><subject>Elastomers</subject><subject>Fasteners</subject><subject>flexible arms</subject><subject>Force</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Motors</subject><subject>Pneumatics</subject><subject>redundant robots</subject><subject>Robots</subject><subject>smart actuators</subject><subject>Trajectory</subject><subject>underactuated robots</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSsEEmNwR-JSiXOHnaRtepwGG0hDQ2Ocqyxxpk5bM5L2AL-eTJs42bLes5-_JLlHGCFC9bRaLkYMMB8xAZXI2UUywEpgBqKQl7HPc5ZxqOR1chPCFoCJCvggmT9TaDZtqlqTvjtDu6bdpM6mM2rJq13zSyadNmvy2ZKa1jqv4-CjpX6vukann8526Vh3veqcD7fJlVW7QHfnOky-pi-ryWs2X8zeJuN5pjmXXWZLw_J1DEAgVAmi1MRA2lIYYwsUCiUrDSCSznM0TJbKlFJXqFSu4oeaD5PH096Dd989ha7eut638WSNhZQF5xwwquCk0t6F4MnWB9_slf-pEeojszoyq4_M6jOzaHk4WRoi-peXiCKi43_Xu2bK</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Bishop-Moser, Joshua</creator><creator>Kota, Sridhar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201506</creationdate><title>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</title><author>Bishop-Moser, Joshua ; Kota, Sridhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f7d25b249e04a7047ce208f74ddf614a1827d011ec551d287ad78c91aa5a015c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actuators</topic><topic>Biologically inspired robots</topic><topic>Deformation</topic><topic>Design</topic><topic>Elastomers</topic><topic>Fasteners</topic><topic>flexible arms</topic><topic>Force</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Motors</topic><topic>Pneumatics</topic><topic>redundant robots</topic><topic>Robots</topic><topic>smart actuators</topic><topic>Trajectory</topic><topic>underactuated robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishop-Moser, Joshua</creatorcontrib><creatorcontrib>Kota, Sridhar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bishop-Moser, Joshua</au><au>Kota, Sridhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2015-06</date><risdate>2015</risdate><volume>31</volume><issue>3</issue><spage>536</spage><epage>545</epage><pages>536-545</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Soft actuators comprised of fluidic structures with fiber-reinforced elastomeric enclosures are seen throughout nature, exhibiting strength, power density, resilience, and diverse motions and forces. However, these structures are rarely used by engineers, in part due to the absence of a generalized understanding of their kinematics and forces. A small subset of soft actuators generating only extension or compression, popularly known as McKibben actuators, has been thoroughly investigated. This paper introduces the entire design space of actuators built with two families of fibers, of which McKibben actuators occupy a subset. The helix angle of the actuator's translation and rotation deformation is determined from the kinematics of the fiber deformation for all fiber angles as the actuator is pressurized. The volumetric transduction of the actuators, relating the output motion to change in contained volume, is analytically determined. The results are discretized to provide a designer with an easy to use design selection chart. The kinematics, force, and moment of the actuators are experimentally validated for all fiber angles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2015.2409452</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2015-06, Vol.31 (3), p.536-545
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2015_2409452
source IEEE Electronic Library (IEL)
subjects Actuators
Biologically inspired robots
Deformation
Design
Elastomers
Fasteners
flexible arms
Force
Kinematics
Mathematical model
Motors
Pneumatics
redundant robots
Robots
smart actuators
Trajectory
underactuated robots
title Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Modeling%20of%20Generalized%20Fiber-Reinforced%20Pneumatic%20Soft%20Actuators&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Bishop-Moser,%20Joshua&rft.date=2015-06&rft.volume=31&rft.issue=3&rft.spage=536&rft.epage=545&rft.pages=536-545&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2015.2409452&rft_dat=%3Cproquest_RIE%3E3716447641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688633301&rft_id=info:pmid/&rft_ieee_id=7114309&rfr_iscdi=true