Extending the Limits of Feature-Based SLAM With B-Splines

This paper describes a simultaneous localization and mapping (SLAM) algorithm for use in unstructured environments that is effective regardless of the geometric complexity of the environment. Features are described using B-splines as modeling tool, and the set of control points defining their shape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2009-04, Vol.25 (2), p.353-366
Hauptverfasser: Pedraza, L., Rodriguez-Losada, D., Matia, F., Dissanayake, G., Miro, J.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 353
container_title IEEE transactions on robotics
container_volume 25
creator Pedraza, L.
Rodriguez-Losada, D.
Matia, F.
Dissanayake, G.
Miro, J.V.
description This paper describes a simultaneous localization and mapping (SLAM) algorithm for use in unstructured environments that is effective regardless of the geometric complexity of the environment. Features are described using B-splines as modeling tool, and the set of control points defining their shape is used to form a complete and compact description of the environment, thus making it feasible to use an extended Kalman-filter (EKF) based SLAM algorithm. This method is the first known EKF-SLAM implementation capable of describing general free-form features in a parametric manner. Efficient strategies for computing the relevant Jacobians, perform data association, initialization, and map enlargement are presented. The algorithms are evaluated for accuracy and consistency using computer simulations, and for effectiveness using experimental data gathered from different real environments.
doi_str_mv 10.1109/TRO.2009.2013496
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2009_2013496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4785206</ieee_id><sourcerecordid>34437386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7e561d7bae9fc325ccd91c73f456543e9562068479526354f3aefa45eb6c2aae3</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxRdRsFbvgpdF8OOyNckk2c2xLa0KlYKteAxpOmtTtrt1swX9701t8eChl5mB-c3Aey-KLinpUErUw_R13GGEqFAocCWPohZVnCaEy-w4zEKwBIjKTqMz75eEMK4ItCI1-GqwnLvyI24WGI_cyjU-rvJ4iKbZ1Jj0jMd5PBl1X-J31yziXjJZF65Efx6d5KbweLHv7ehtOJj2n5LR-PG53x0llousSVIUks7TmUGVW2DC2rmiNoWcCyk4oBKSEZnxVAkmQfAcDOaGC5xJy4xBaEd3u7_ruvrcoG_0ynmLRWFKrDZeBxlSkKA1kLcHSeAcUshkAO8PglSmlAHjLA3o9T90WW3qMgjWwWghFeUQILKDbF15X2Ou17VbmfpbU6K36eiQjt6mo_fphJOb_V_jrSny2pTW-b87RkGA-NV0teMcIv6teZqJ4Br8AFR1lBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201569143</pqid></control><display><type>article</type><title>Extending the Limits of Feature-Based SLAM With B-Splines</title><source>IEEE Electronic Library (IEL)</source><creator>Pedraza, L. ; Rodriguez-Losada, D. ; Matia, F. ; Dissanayake, G. ; Miro, J.V.</creator><creatorcontrib>Pedraza, L. ; Rodriguez-Losada, D. ; Matia, F. ; Dissanayake, G. ; Miro, J.V.</creatorcontrib><description>This paper describes a simultaneous localization and mapping (SLAM) algorithm for use in unstructured environments that is effective regardless of the geometric complexity of the environment. Features are described using B-splines as modeling tool, and the set of control points defining their shape is used to form a complete and compact description of the environment, thus making it feasible to use an extended Kalman-filter (EKF) based SLAM algorithm. This method is the first known EKF-SLAM implementation capable of describing general free-form features in a parametric manner. Efficient strategies for computing the relevant Jacobians, perform data association, initialization, and map enlargement are presented. The algorithms are evaluated for accuracy and consistency using computer simulations, and for effectiveness using experimental data gathered from different real environments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2009.2013496</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer simulation ; Consistency ; Control theory. Systems ; Enlargement ; Exact sciences and technology ; Filtering ; Intelligent control ; Jacobian matrices ; Jacobians ; Kalman filtering ; Kalman filters ; Laser modes ; Mapping ; Mathematical models ; Mobile robots ; Robot sensing systems ; Robotics ; Shape control ; Simulation ; Simultaneous localization and mapping ; simultaneous localization and mapping (SLAM) ; Spline ; spline functions ; Strategy</subject><ispartof>IEEE transactions on robotics, 2009-04, Vol.25 (2), p.353-366</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7e561d7bae9fc325ccd91c73f456543e9562068479526354f3aefa45eb6c2aae3</citedby><cites>FETCH-LOGICAL-c458t-7e561d7bae9fc325ccd91c73f456543e9562068479526354f3aefa45eb6c2aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4785206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4785206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21353594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedraza, L.</creatorcontrib><creatorcontrib>Rodriguez-Losada, D.</creatorcontrib><creatorcontrib>Matia, F.</creatorcontrib><creatorcontrib>Dissanayake, G.</creatorcontrib><creatorcontrib>Miro, J.V.</creatorcontrib><title>Extending the Limits of Feature-Based SLAM With B-Splines</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper describes a simultaneous localization and mapping (SLAM) algorithm for use in unstructured environments that is effective regardless of the geometric complexity of the environment. Features are described using B-splines as modeling tool, and the set of control points defining their shape is used to form a complete and compact description of the environment, thus making it feasible to use an extended Kalman-filter (EKF) based SLAM algorithm. This method is the first known EKF-SLAM implementation capable of describing general free-form features in a parametric manner. Efficient strategies for computing the relevant Jacobians, perform data association, initialization, and map enlargement are presented. The algorithms are evaluated for accuracy and consistency using computer simulations, and for effectiveness using experimental data gathered from different real environments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Consistency</subject><subject>Control theory. Systems</subject><subject>Enlargement</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Intelligent control</subject><subject>Jacobian matrices</subject><subject>Jacobians</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Laser modes</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Mobile robots</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Shape control</subject><subject>Simulation</subject><subject>Simultaneous localization and mapping</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Spline</subject><subject>spline functions</subject><subject>Strategy</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LAzEQxRdRsFbvgpdF8OOyNckk2c2xLa0KlYKteAxpOmtTtrt1swX9701t8eChl5mB-c3Aey-KLinpUErUw_R13GGEqFAocCWPohZVnCaEy-w4zEKwBIjKTqMz75eEMK4ItCI1-GqwnLvyI24WGI_cyjU-rvJ4iKbZ1Jj0jMd5PBl1X-J31yziXjJZF65Efx6d5KbweLHv7ehtOJj2n5LR-PG53x0llousSVIUks7TmUGVW2DC2rmiNoWcCyk4oBKSEZnxVAkmQfAcDOaGC5xJy4xBaEd3u7_ruvrcoG_0ynmLRWFKrDZeBxlSkKA1kLcHSeAcUshkAO8PglSmlAHjLA3o9T90WW3qMgjWwWghFeUQILKDbF15X2Ou17VbmfpbU6K36eiQjt6mo_fphJOb_V_jrSny2pTW-b87RkGA-NV0teMcIv6teZqJ4Br8AFR1lBk</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Pedraza, L.</creator><creator>Rodriguez-Losada, D.</creator><creator>Matia, F.</creator><creator>Dissanayake, G.</creator><creator>Miro, J.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090401</creationdate><title>Extending the Limits of Feature-Based SLAM With B-Splines</title><author>Pedraza, L. ; Rodriguez-Losada, D. ; Matia, F. ; Dissanayake, G. ; Miro, J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7e561d7bae9fc325ccd91c73f456543e9562068479526354f3aefa45eb6c2aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Consistency</topic><topic>Control theory. Systems</topic><topic>Enlargement</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Intelligent control</topic><topic>Jacobian matrices</topic><topic>Jacobians</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Laser modes</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Mobile robots</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Shape control</topic><topic>Simulation</topic><topic>Simultaneous localization and mapping</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Spline</topic><topic>spline functions</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedraza, L.</creatorcontrib><creatorcontrib>Rodriguez-Losada, D.</creatorcontrib><creatorcontrib>Matia, F.</creatorcontrib><creatorcontrib>Dissanayake, G.</creatorcontrib><creatorcontrib>Miro, J.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pedraza, L.</au><au>Rodriguez-Losada, D.</au><au>Matia, F.</au><au>Dissanayake, G.</au><au>Miro, J.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the Limits of Feature-Based SLAM With B-Splines</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>25</volume><issue>2</issue><spage>353</spage><epage>366</epage><pages>353-366</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper describes a simultaneous localization and mapping (SLAM) algorithm for use in unstructured environments that is effective regardless of the geometric complexity of the environment. Features are described using B-splines as modeling tool, and the set of control points defining their shape is used to form a complete and compact description of the environment, thus making it feasible to use an extended Kalman-filter (EKF) based SLAM algorithm. This method is the first known EKF-SLAM implementation capable of describing general free-form features in a parametric manner. Efficient strategies for computing the relevant Jacobians, perform data association, initialization, and map enlargement are presented. The algorithms are evaluated for accuracy and consistency using computer simulations, and for effectiveness using experimental data gathered from different real environments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2009.2013496</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2009-04, Vol.25 (2), p.353-366
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2009_2013496
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Computer simulation
Consistency
Control theory. Systems
Enlargement
Exact sciences and technology
Filtering
Intelligent control
Jacobian matrices
Jacobians
Kalman filtering
Kalman filters
Laser modes
Mapping
Mathematical models
Mobile robots
Robot sensing systems
Robotics
Shape control
Simulation
Simultaneous localization and mapping
simultaneous localization and mapping (SLAM)
Spline
spline functions
Strategy
title Extending the Limits of Feature-Based SLAM With B-Splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20Limits%20of%20Feature-Based%20SLAM%20With%20B-Splines&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Pedraza,%20L.&rft.date=2009-04-01&rft.volume=25&rft.issue=2&rft.spage=353&rft.epage=366&rft.pages=353-366&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2009.2013496&rft_dat=%3Cproquest_RIE%3E34437386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201569143&rft_id=info:pmid/&rft_ieee_id=4785206&rfr_iscdi=true