Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis
Due to various controls in voltage-source converters, their impacts and mutual influences on transient stability of new-generation power systems are still obscure. Different from the mature different-order transient equations for synchronous generator (SG), fully accepted transient equations of conv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2024-05, Vol.39 (3), p.4818-4834 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4834 |
---|---|
container_issue | 3 |
container_start_page | 4818 |
container_title | IEEE transactions on power systems |
container_volume | 39 |
creator | Ma, Rui Zhang, Yayao Zhan, Meng Cao, Kan Liu, Dan Jiang, Kezheng Cheng, Shijie |
description | Due to various controls in voltage-source converters, their impacts and mutual influences on transient stability of new-generation power systems are still obscure. Different from the mature different-order transient equations for synchronous generator (SG), fully accepted transient equations of converters still lack. In this article, a novel methodology is proposed to uniformly evaluate the controller effects on the transient stability and then establish the hierarchical transient equations of converters based on the properties of controlling-unstable-equilibrium point (CUEP). The participation factors on unstable eigenvalue of CUEP are applied to measure the contribution of state variables in transient dynamics, and dominant variables and key loops of grid-following and grid-forming converters are determined and compared. It is found that the synchronous loop, e.g., phase-locked loop in grid-following converters and virtual-synchronous loop in grid-forming converters, plays a primary role, and the power balance loop on the DC capacitor, including DC-voltage control and DC capacitor dynamics, plays a secondary role. Additionally, the impacts of synchronization and power balance are compared with the rotor swing of the SG. Analytical results are demonstrated by time-domain simulations and transient stability assessments. The dominant transient models and the CUEP-based participation factor analysis provide an improved physical insight on our understanding of transient dynamics in the new-generation power systems dominated by not only grid-following but also grid-forming converters. |
doi_str_mv | 10.1109/TPWRS.2023.3332882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2023_3332882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319102</ieee_id><sourcerecordid>3041514478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-31134e128020bf7d8299a03265a1e7dcd6a091297cc0709be3f8c2fc357c7cd13</originalsourceid><addsrcrecordid>eNpNUdtKAzEQDaJgvfyA-LDgc-ok2UvyqNVWoWDRFh-XbDYrkd2kJqnST_Fv3W0VfJqZM-ecGTgIXRAYEwLierl4fX4ZU6BszBijnNMDNCJZxjHkhThEI-A8w1xkcIxOQngHgLxfjND3neuMlTYmSy9tMLrv7j82MhpnQ-KaZOZNjaeubd2XsW-JtPUf5LsBmDj7qX3UPiTVdpii78n9Bq9siLJqNR4MTWsqbzYdXjhjI76VQdfJQvpolFnvriVTqaLzyY2V7TaYcIaOGtkGff5bT9Fqer-cPOD50-xxcjPHioo8YkYISzWhHChUTVFzKoQERvNMEl3Uqs4lCEJFoRQUICrNGq5oo1hWqELVhJ2iq73v2ruPjQ6xfHcb3z8RSgYpyUiaFrxn0T1LeReC10259qaTflsSKIcIyl0E5RBB-RtBL7rci4zW-p-AEUF63g_8fYWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041514478</pqid></control><display><type>article</type><title>Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Rui ; Zhang, Yayao ; Zhan, Meng ; Cao, Kan ; Liu, Dan ; Jiang, Kezheng ; Cheng, Shijie</creator><creatorcontrib>Ma, Rui ; Zhang, Yayao ; Zhan, Meng ; Cao, Kan ; Liu, Dan ; Jiang, Kezheng ; Cheng, Shijie</creatorcontrib><description>Due to various controls in voltage-source converters, their impacts and mutual influences on transient stability of new-generation power systems are still obscure. Different from the mature different-order transient equations for synchronous generator (SG), fully accepted transient equations of converters still lack. In this article, a novel methodology is proposed to uniformly evaluate the controller effects on the transient stability and then establish the hierarchical transient equations of converters based on the properties of controlling-unstable-equilibrium point (CUEP). The participation factors on unstable eigenvalue of CUEP are applied to measure the contribution of state variables in transient dynamics, and dominant variables and key loops of grid-following and grid-forming converters are determined and compared. It is found that the synchronous loop, e.g., phase-locked loop in grid-following converters and virtual-synchronous loop in grid-forming converters, plays a primary role, and the power balance loop on the DC capacitor, including DC-voltage control and DC capacitor dynamics, plays a secondary role. Additionally, the impacts of synchronization and power balance are compared with the rotor swing of the SG. Analytical results are demonstrated by time-domain simulations and transient stability assessments. The dominant transient models and the CUEP-based participation factor analysis provide an improved physical insight on our understanding of transient dynamics in the new-generation power systems dominated by not only grid-following but also grid-forming converters.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2023.3332882</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; controlling unstable equilibrium point ; Discriminant analysis ; dominant variables ; Eigenvalues ; Electric potential ; Electric power systems ; Factor analysis ; grid-following converter ; grid-forming converter ; hierarchical transient equation ; Manifolds ; Mathematical models ; Phase locked loops ; Power system dynamics ; Power system stability ; Stability analysis ; Synchronism ; Synchronous generators ; Synchronous machines ; Transient analysis ; Transient stability ; Transient stability analysis ; Unstable equilibrium point ; Voltage</subject><ispartof>IEEE transactions on power systems, 2024-05, Vol.39 (3), p.4818-4834</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-31134e128020bf7d8299a03265a1e7dcd6a091297cc0709be3f8c2fc357c7cd13</citedby><cites>FETCH-LOGICAL-c296t-31134e128020bf7d8299a03265a1e7dcd6a091297cc0709be3f8c2fc357c7cd13</cites><orcidid>0000-0002-2331-2002 ; 0000-0002-3884-8950 ; 0000-0001-6241-2295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10319102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Zhang, Yayao</creatorcontrib><creatorcontrib>Zhan, Meng</creatorcontrib><creatorcontrib>Cao, Kan</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Jiang, Kezheng</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><title>Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Due to various controls in voltage-source converters, their impacts and mutual influences on transient stability of new-generation power systems are still obscure. Different from the mature different-order transient equations for synchronous generator (SG), fully accepted transient equations of converters still lack. In this article, a novel methodology is proposed to uniformly evaluate the controller effects on the transient stability and then establish the hierarchical transient equations of converters based on the properties of controlling-unstable-equilibrium point (CUEP). The participation factors on unstable eigenvalue of CUEP are applied to measure the contribution of state variables in transient dynamics, and dominant variables and key loops of grid-following and grid-forming converters are determined and compared. It is found that the synchronous loop, e.g., phase-locked loop in grid-following converters and virtual-synchronous loop in grid-forming converters, plays a primary role, and the power balance loop on the DC capacitor, including DC-voltage control and DC capacitor dynamics, plays a secondary role. Additionally, the impacts of synchronization and power balance are compared with the rotor swing of the SG. Analytical results are demonstrated by time-domain simulations and transient stability assessments. The dominant transient models and the CUEP-based participation factor analysis provide an improved physical insight on our understanding of transient dynamics in the new-generation power systems dominated by not only grid-following but also grid-forming converters.</description><subject>Capacitors</subject><subject>controlling unstable equilibrium point</subject><subject>Discriminant analysis</subject><subject>dominant variables</subject><subject>Eigenvalues</subject><subject>Electric potential</subject><subject>Electric power systems</subject><subject>Factor analysis</subject><subject>grid-following converter</subject><subject>grid-forming converter</subject><subject>hierarchical transient equation</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Phase locked loops</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronous generators</subject><subject>Synchronous machines</subject><subject>Transient analysis</subject><subject>Transient stability</subject><subject>Transient stability analysis</subject><subject>Unstable equilibrium point</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUdtKAzEQDaJgvfyA-LDgc-ok2UvyqNVWoWDRFh-XbDYrkd2kJqnST_Fv3W0VfJqZM-ecGTgIXRAYEwLierl4fX4ZU6BszBijnNMDNCJZxjHkhThEI-A8w1xkcIxOQngHgLxfjND3neuMlTYmSy9tMLrv7j82MhpnQ-KaZOZNjaeubd2XsW-JtPUf5LsBmDj7qX3UPiTVdpii78n9Bq9siLJqNR4MTWsqbzYdXjhjI76VQdfJQvpolFnvriVTqaLzyY2V7TaYcIaOGtkGff5bT9Fqer-cPOD50-xxcjPHioo8YkYISzWhHChUTVFzKoQERvNMEl3Uqs4lCEJFoRQUICrNGq5oo1hWqELVhJ2iq73v2ruPjQ6xfHcb3z8RSgYpyUiaFrxn0T1LeReC10259qaTflsSKIcIyl0E5RBB-RtBL7rci4zW-p-AEUF63g_8fYWv</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ma, Rui</creator><creator>Zhang, Yayao</creator><creator>Zhan, Meng</creator><creator>Cao, Kan</creator><creator>Liu, Dan</creator><creator>Jiang, Kezheng</creator><creator>Cheng, Shijie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2331-2002</orcidid><orcidid>https://orcid.org/0000-0002-3884-8950</orcidid><orcidid>https://orcid.org/0000-0001-6241-2295</orcidid></search><sort><creationdate>202405</creationdate><title>Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis</title><author>Ma, Rui ; Zhang, Yayao ; Zhan, Meng ; Cao, Kan ; Liu, Dan ; Jiang, Kezheng ; Cheng, Shijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-31134e128020bf7d8299a03265a1e7dcd6a091297cc0709be3f8c2fc357c7cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitors</topic><topic>controlling unstable equilibrium point</topic><topic>Discriminant analysis</topic><topic>dominant variables</topic><topic>Eigenvalues</topic><topic>Electric potential</topic><topic>Electric power systems</topic><topic>Factor analysis</topic><topic>grid-following converter</topic><topic>grid-forming converter</topic><topic>hierarchical transient equation</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Phase locked loops</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronous generators</topic><topic>Synchronous machines</topic><topic>Transient analysis</topic><topic>Transient stability</topic><topic>Transient stability analysis</topic><topic>Unstable equilibrium point</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Zhang, Yayao</creatorcontrib><creatorcontrib>Zhan, Meng</creatorcontrib><creatorcontrib>Cao, Kan</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Jiang, Kezheng</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Rui</au><au>Zhang, Yayao</au><au>Zhan, Meng</au><au>Cao, Kan</au><au>Liu, Dan</au><au>Jiang, Kezheng</au><au>Cheng, Shijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2024-05</date><risdate>2024</risdate><volume>39</volume><issue>3</issue><spage>4818</spage><epage>4834</epage><pages>4818-4834</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Due to various controls in voltage-source converters, their impacts and mutual influences on transient stability of new-generation power systems are still obscure. Different from the mature different-order transient equations for synchronous generator (SG), fully accepted transient equations of converters still lack. In this article, a novel methodology is proposed to uniformly evaluate the controller effects on the transient stability and then establish the hierarchical transient equations of converters based on the properties of controlling-unstable-equilibrium point (CUEP). The participation factors on unstable eigenvalue of CUEP are applied to measure the contribution of state variables in transient dynamics, and dominant variables and key loops of grid-following and grid-forming converters are determined and compared. It is found that the synchronous loop, e.g., phase-locked loop in grid-following converters and virtual-synchronous loop in grid-forming converters, plays a primary role, and the power balance loop on the DC capacitor, including DC-voltage control and DC capacitor dynamics, plays a secondary role. Additionally, the impacts of synchronization and power balance are compared with the rotor swing of the SG. Analytical results are demonstrated by time-domain simulations and transient stability assessments. The dominant transient models and the CUEP-based participation factor analysis provide an improved physical insight on our understanding of transient dynamics in the new-generation power systems dominated by not only grid-following but also grid-forming converters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2023.3332882</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2331-2002</orcidid><orcidid>https://orcid.org/0000-0002-3884-8950</orcidid><orcidid>https://orcid.org/0000-0001-6241-2295</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2024-05, Vol.39 (3), p.4818-4834 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2023_3332882 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors controlling unstable equilibrium point Discriminant analysis dominant variables Eigenvalues Electric potential Electric power systems Factor analysis grid-following converter grid-forming converter hierarchical transient equation Manifolds Mathematical models Phase locked loops Power system dynamics Power system stability Stability analysis Synchronism Synchronous generators Synchronous machines Transient analysis Transient stability Transient stability analysis Unstable equilibrium point Voltage |
title | Dominant Transient Equations of Grid-Following and Grid-Forming Converters by Controlling-Unstable- Equilibrium-Point-Based Participation Factor Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominant%20Transient%20Equations%20of%20Grid-Following%20and%20Grid-Forming%20Converters%20by%20Controlling-Unstable-%20Equilibrium-Point-Based%20Participation%20Factor%20Analysis&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ma,%20Rui&rft.date=2024-05&rft.volume=39&rft.issue=3&rft.spage=4818&rft.epage=4834&rft.pages=4818-4834&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2023.3332882&rft_dat=%3Cproquest_RIE%3E3041514478%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041514478&rft_id=info:pmid/&rft_ieee_id=10319102&rfr_iscdi=true |