Imitation Learning Based Fast Power System Production Cost Minimization Simulation

Production cost minimization (PCM) simulation is an important tool for long-term power system simulation and assessment. However, solving a PCM problem is always time-consuming for its numerous binary variables. Besides, as modern energy systems have various planning options, the slow solution speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-05, Vol.38 (3), p.1-4
Hauptverfasser: Hu, Qinran, Guo, Zishan, Li, Fangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on power systems
container_volume 38
creator Hu, Qinran
Guo, Zishan
Li, Fangxing
description Production cost minimization (PCM) simulation is an important tool for long-term power system simulation and assessment. However, solving a PCM problem is always time-consuming for its numerous binary variables. Besides, as modern energy systems have various planning options, the slow solution speed of PCM problems cannot satisfy the requirement of quick assessment of various plans. Most previous works on accelerating PCM problems ignore the importance of accurate solutions on proper assessment but only provide approximate solutions. Therefore, this work provides a fast PCM simulation method with optimality guarantee based on imitation learning. Compared with the popular open-source solver SCIP under default rules, the proposed method can find the optimal solution faster or provide smaller gap when the preset solving time limit hits. Simulation results show the effectiveness of the proposed method.
doi_str_mv 10.1109/TPWRS.2023.3237398
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2023_3237398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018270</ieee_id><sourcerecordid>2806220221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-6ca697aea08325a27e21eec6506564ef18411ba1d816fd776f5709c41234272b3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6d3c1-5KjFaqFiaSsel20ykS1NUncTpP5606YHTzPwvs8MPITcUhhRCunDav65WI4YMD7ijCue6jMyoELoGKRKz8kAtBaxTgVckqsQNgAgu2BAFtPSNbZxdRXN0PrKVV_Rkw2YRxMbmmhe_6CPlvvQYBnNfZ232bE7rrvwzVWudL89vXRluz2u1-SisNuAN6c5JB-T59X4NZ69v0zHj7M444loYplZmSqLFjRnwjKFjCJmUoAUMsGC6oTStaW5prLIlZKFUJBmCWU8YYqt-ZDc93d3vv5uMTRmU7e-6l4apkGyzgajXYv1rczXIXgszM670vq9oWAO7szRnTm4Myd3HXTXQw4R_wFANVPA_wCKE2q-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220221</pqid></control><display><type>article</type><title>Imitation Learning Based Fast Power System Production Cost Minimization Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Qinran ; Guo, Zishan ; Li, Fangxing</creator><creatorcontrib>Hu, Qinran ; Guo, Zishan ; Li, Fangxing</creatorcontrib><description>Production cost minimization (PCM) simulation is an important tool for long-term power system simulation and assessment. However, solving a PCM problem is always time-consuming for its numerous binary variables. Besides, as modern energy systems have various planning options, the slow solution speed of PCM problems cannot satisfy the requirement of quick assessment of various plans. Most previous works on accelerating PCM problems ignore the importance of accurate solutions on proper assessment but only provide approximate solutions. Therefore, this work provides a fast PCM simulation method with optimality guarantee based on imitation learning. Compared with the popular open-source solver SCIP under default rules, the proposed method can find the optimal solution faster or provide smaller gap when the preset solving time limit hits. Simulation results show the effectiveness of the proposed method.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2023.3237398</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Costs ; Fast production cost minimization simulation ; Generators ; imitation learning ; Input variables ; Learning ; Minimization ; Optimization ; Phase change materials ; power system planning ; Production costs ; Simulation ; Training ; Wind farms</subject><ispartof>IEEE transactions on power systems, 2023-05, Vol.38 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-6ca697aea08325a27e21eec6506564ef18411ba1d816fd776f5709c41234272b3</citedby><cites>FETCH-LOGICAL-c345t-6ca697aea08325a27e21eec6506564ef18411ba1d816fd776f5709c41234272b3</cites><orcidid>0000-0002-5398-5718 ; 0000-0003-1060-7618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10018270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Qinran</creatorcontrib><creatorcontrib>Guo, Zishan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><title>Imitation Learning Based Fast Power System Production Cost Minimization Simulation</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Production cost minimization (PCM) simulation is an important tool for long-term power system simulation and assessment. However, solving a PCM problem is always time-consuming for its numerous binary variables. Besides, as modern energy systems have various planning options, the slow solution speed of PCM problems cannot satisfy the requirement of quick assessment of various plans. Most previous works on accelerating PCM problems ignore the importance of accurate solutions on proper assessment but only provide approximate solutions. Therefore, this work provides a fast PCM simulation method with optimality guarantee based on imitation learning. Compared with the popular open-source solver SCIP under default rules, the proposed method can find the optimal solution faster or provide smaller gap when the preset solving time limit hits. Simulation results show the effectiveness of the proposed method.</description><subject>Costs</subject><subject>Fast production cost minimization simulation</subject><subject>Generators</subject><subject>imitation learning</subject><subject>Input variables</subject><subject>Learning</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Phase change materials</subject><subject>power system planning</subject><subject>Production costs</subject><subject>Simulation</subject><subject>Training</subject><subject>Wind farms</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6d3c1-5KjFaqFiaSsel20ykS1NUncTpP5606YHTzPwvs8MPITcUhhRCunDav65WI4YMD7ijCue6jMyoELoGKRKz8kAtBaxTgVckqsQNgAgu2BAFtPSNbZxdRXN0PrKVV_Rkw2YRxMbmmhe_6CPlvvQYBnNfZ232bE7rrvwzVWudL89vXRluz2u1-SisNuAN6c5JB-T59X4NZ69v0zHj7M444loYplZmSqLFjRnwjKFjCJmUoAUMsGC6oTStaW5prLIlZKFUJBmCWU8YYqt-ZDc93d3vv5uMTRmU7e-6l4apkGyzgajXYv1rczXIXgszM670vq9oWAO7szRnTm4Myd3HXTXQw4R_wFANVPA_wCKE2q-</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hu, Qinran</creator><creator>Guo, Zishan</creator><creator>Li, Fangxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5398-5718</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid></search><sort><creationdate>20230501</creationdate><title>Imitation Learning Based Fast Power System Production Cost Minimization Simulation</title><author>Hu, Qinran ; Guo, Zishan ; Li, Fangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-6ca697aea08325a27e21eec6506564ef18411ba1d816fd776f5709c41234272b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Costs</topic><topic>Fast production cost minimization simulation</topic><topic>Generators</topic><topic>imitation learning</topic><topic>Input variables</topic><topic>Learning</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Phase change materials</topic><topic>power system planning</topic><topic>Production costs</topic><topic>Simulation</topic><topic>Training</topic><topic>Wind farms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qinran</creatorcontrib><creatorcontrib>Guo, Zishan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Qinran</au><au>Guo, Zishan</au><au>Li, Fangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imitation Learning Based Fast Power System Production Cost Minimization Simulation</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>38</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Production cost minimization (PCM) simulation is an important tool for long-term power system simulation and assessment. However, solving a PCM problem is always time-consuming for its numerous binary variables. Besides, as modern energy systems have various planning options, the slow solution speed of PCM problems cannot satisfy the requirement of quick assessment of various plans. Most previous works on accelerating PCM problems ignore the importance of accurate solutions on proper assessment but only provide approximate solutions. Therefore, this work provides a fast PCM simulation method with optimality guarantee based on imitation learning. Compared with the popular open-source solver SCIP under default rules, the proposed method can find the optimal solution faster or provide smaller gap when the preset solving time limit hits. Simulation results show the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2023.3237398</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5398-5718</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-05, Vol.38 (3), p.1-4
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2023_3237398
source IEEE Electronic Library (IEL)
subjects Costs
Fast production cost minimization simulation
Generators
imitation learning
Input variables
Learning
Minimization
Optimization
Phase change materials
power system planning
Production costs
Simulation
Training
Wind farms
title Imitation Learning Based Fast Power System Production Cost Minimization Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imitation%20Learning%20Based%20Fast%20Power%20System%20Production%20Cost%20Minimization%20Simulation&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Hu,%20Qinran&rft.date=2023-05-01&rft.volume=38&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2023.3237398&rft_dat=%3Cproquest_RIE%3E2806220221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220221&rft_id=info:pmid/&rft_ieee_id=10018270&rfr_iscdi=true