RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems
The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value functi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2023-11, Vol.38 (6), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on power systems |
container_volume | 38 |
creator | Zhuo, Yelin Zhu, Jianquan Chen, Jiajun Wang, Zeshuang Ye, Hanfang Liu, Haixin Liu, Mingbo |
description | The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency. |
doi_str_mv | 10.1109/TPWRS.2022.3227345 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3227345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9973395</ieee_id><sourcerecordid>2879378083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Yx3TaLhFBTSASwLhw0ZROZxziTLEdovPvLUJc3eSec-7jA-AaowHGSN6t5m-L5YAgQgaUEE5TdgJ6mDGRoIzLU9BDQrBESIbOwUUIG4RQFoUeeF8sZ8m9DjaHw-3Wu5-q1q2FD12j68rAuXel13VdNSUsnIfL1pkPHdoojRvryw7OdKNLW9umha6Ac_dto6sLra3DJTgr9GewV8faB6-T8Wr0lExfHp9Hw2liiGRtYuwaC5HlHGVYEiFTnKVcGyE1koJhFFuFXlNMCE5TQwuU50JQIzjJ1zSXGe2D28PceP_XzoZWbdzON3GlIoJLygUSNLrIwWW8C8HbQm19fNZ3CiO1h6j-IKo9RHWEGEM3h1Blrf0PSMkplYz-AuFUbUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879378083</pqid></control><display><type>article</type><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</creator><creatorcontrib>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</creatorcontrib><description>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3227345</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Chebyshev approximation ; Computing time ; Dynamic programming ; Energy management ; Heuristic algorithms ; improved approximate dynamic programming ; improved generalized polynomial chaos ; Monte Carlo simulation ; Polynomials ; Power system dynamics ; Power systems ; Randomness ; response surface method ; Response surface methodology ; Stochastic energy management ; System effectiveness ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2023-11, Vol.38 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</citedby><cites>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</cites><orcidid>0000-0001-8084-7292 ; 0000-0001-6701-4018 ; 0000-0001-9097-9045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9973395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9973395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</description><subject>Algorithms</subject><subject>Chebyshev approximation</subject><subject>Computing time</subject><subject>Dynamic programming</subject><subject>Energy management</subject><subject>Heuristic algorithms</subject><subject>improved approximate dynamic programming</subject><subject>improved generalized polynomial chaos</subject><subject>Monte Carlo simulation</subject><subject>Polynomials</subject><subject>Power system dynamics</subject><subject>Power systems</subject><subject>Randomness</subject><subject>response surface method</subject><subject>Response surface methodology</subject><subject>Stochastic energy management</subject><subject>System effectiveness</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Yx3TaLhFBTSASwLhw0ZROZxziTLEdovPvLUJc3eSec-7jA-AaowHGSN6t5m-L5YAgQgaUEE5TdgJ6mDGRoIzLU9BDQrBESIbOwUUIG4RQFoUeeF8sZ8m9DjaHw-3Wu5-q1q2FD12j68rAuXel13VdNSUsnIfL1pkPHdoojRvryw7OdKNLW9umha6Ac_dto6sLra3DJTgr9GewV8faB6-T8Wr0lExfHp9Hw2liiGRtYuwaC5HlHGVYEiFTnKVcGyE1koJhFFuFXlNMCE5TQwuU50JQIzjJ1zSXGe2D28PceP_XzoZWbdzON3GlIoJLygUSNLrIwWW8C8HbQm19fNZ3CiO1h6j-IKo9RHWEGEM3h1Blrf0PSMkplYz-AuFUbUc</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhuo, Yelin</creator><creator>Zhu, Jianquan</creator><creator>Chen, Jiajun</creator><creator>Wang, Zeshuang</creator><creator>Ye, Hanfang</creator><creator>Liu, Haixin</creator><creator>Liu, Mingbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid></search><sort><creationdate>20231101</creationdate><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><author>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chebyshev approximation</topic><topic>Computing time</topic><topic>Dynamic programming</topic><topic>Energy management</topic><topic>Heuristic algorithms</topic><topic>improved approximate dynamic programming</topic><topic>improved generalized polynomial chaos</topic><topic>Monte Carlo simulation</topic><topic>Polynomials</topic><topic>Power system dynamics</topic><topic>Power systems</topic><topic>Randomness</topic><topic>response surface method</topic><topic>Response surface methodology</topic><topic>Stochastic energy management</topic><topic>System effectiveness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Yelin</au><au>Zhu, Jianquan</au><au>Chen, Jiajun</au><au>Wang, Zeshuang</au><au>Ye, Hanfang</au><au>Liu, Haixin</au><au>Liu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>38</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3227345</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2023-11, Vol.38 (6), p.1-13 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2022_3227345 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Chebyshev approximation Computing time Dynamic programming Energy management Heuristic algorithms improved approximate dynamic programming improved generalized polynomial chaos Monte Carlo simulation Polynomials Power system dynamics Power systems Randomness response surface method Response surface methodology Stochastic energy management System effectiveness Uncertainty |
title | RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSM-Based%20Approximate%20Dynamic%20Programming%20for%20Stochastic%20Energy%20Management%20of%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhuo,%20Yelin&rft.date=2023-11-01&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3227345&rft_dat=%3Cproquest_RIE%3E2879378083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879378083&rft_id=info:pmid/&rft_ieee_id=9973395&rfr_iscdi=true |