RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems

The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-11, Vol.38 (6), p.1-13
Hauptverfasser: Zhuo, Yelin, Zhu, Jianquan, Chen, Jiajun, Wang, Zeshuang, Ye, Hanfang, Liu, Haixin, Liu, Mingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 1
container_title IEEE transactions on power systems
container_volume 38
creator Zhuo, Yelin
Zhu, Jianquan
Chen, Jiajun
Wang, Zeshuang
Ye, Hanfang
Liu, Haixin
Liu, Mingbo
description The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.
doi_str_mv 10.1109/TPWRS.2022.3227345
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3227345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9973395</ieee_id><sourcerecordid>2879378083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Yx3TaLhFBTSASwLhw0ZROZxziTLEdovPvLUJc3eSec-7jA-AaowHGSN6t5m-L5YAgQgaUEE5TdgJ6mDGRoIzLU9BDQrBESIbOwUUIG4RQFoUeeF8sZ8m9DjaHw-3Wu5-q1q2FD12j68rAuXel13VdNSUsnIfL1pkPHdoojRvryw7OdKNLW9umha6Ac_dto6sLra3DJTgr9GewV8faB6-T8Wr0lExfHp9Hw2liiGRtYuwaC5HlHGVYEiFTnKVcGyE1koJhFFuFXlNMCE5TQwuU50JQIzjJ1zSXGe2D28PceP_XzoZWbdzON3GlIoJLygUSNLrIwWW8C8HbQm19fNZ3CiO1h6j-IKo9RHWEGEM3h1Blrf0PSMkplYz-AuFUbUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879378083</pqid></control><display><type>article</type><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</creator><creatorcontrib>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</creatorcontrib><description>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3227345</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Chebyshev approximation ; Computing time ; Dynamic programming ; Energy management ; Heuristic algorithms ; improved approximate dynamic programming ; improved generalized polynomial chaos ; Monte Carlo simulation ; Polynomials ; Power system dynamics ; Power systems ; Randomness ; response surface method ; Response surface methodology ; Stochastic energy management ; System effectiveness ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2023-11, Vol.38 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</citedby><cites>FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</cites><orcidid>0000-0001-8084-7292 ; 0000-0001-6701-4018 ; 0000-0001-9097-9045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9973395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9973395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</description><subject>Algorithms</subject><subject>Chebyshev approximation</subject><subject>Computing time</subject><subject>Dynamic programming</subject><subject>Energy management</subject><subject>Heuristic algorithms</subject><subject>improved approximate dynamic programming</subject><subject>improved generalized polynomial chaos</subject><subject>Monte Carlo simulation</subject><subject>Polynomials</subject><subject>Power system dynamics</subject><subject>Power systems</subject><subject>Randomness</subject><subject>response surface method</subject><subject>Response surface methodology</subject><subject>Stochastic energy management</subject><subject>System effectiveness</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Yx3TaLhFBTSASwLhw0ZROZxziTLEdovPvLUJc3eSec-7jA-AaowHGSN6t5m-L5YAgQgaUEE5TdgJ6mDGRoIzLU9BDQrBESIbOwUUIG4RQFoUeeF8sZ8m9DjaHw-3Wu5-q1q2FD12j68rAuXel13VdNSUsnIfL1pkPHdoojRvryw7OdKNLW9umha6Ac_dto6sLra3DJTgr9GewV8faB6-T8Wr0lExfHp9Hw2liiGRtYuwaC5HlHGVYEiFTnKVcGyE1koJhFFuFXlNMCE5TQwuU50JQIzjJ1zSXGe2D28PceP_XzoZWbdzON3GlIoJLygUSNLrIwWW8C8HbQm19fNZ3CiO1h6j-IKo9RHWEGEM3h1Blrf0PSMkplYz-AuFUbUc</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhuo, Yelin</creator><creator>Zhu, Jianquan</creator><creator>Chen, Jiajun</creator><creator>Wang, Zeshuang</creator><creator>Ye, Hanfang</creator><creator>Liu, Haixin</creator><creator>Liu, Mingbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid></search><sort><creationdate>20231101</creationdate><title>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</title><author>Zhuo, Yelin ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Ye, Hanfang ; Liu, Haixin ; Liu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ceb1886d7061928941647ac89a098510289fab3122144c3f0dd883c872db3d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chebyshev approximation</topic><topic>Computing time</topic><topic>Dynamic programming</topic><topic>Energy management</topic><topic>Heuristic algorithms</topic><topic>improved approximate dynamic programming</topic><topic>improved generalized polynomial chaos</topic><topic>Monte Carlo simulation</topic><topic>Polynomials</topic><topic>Power system dynamics</topic><topic>Power systems</topic><topic>Randomness</topic><topic>response surface method</topic><topic>Response surface methodology</topic><topic>Stochastic energy management</topic><topic>System effectiveness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Yelin</au><au>Zhu, Jianquan</au><au>Chen, Jiajun</au><au>Wang, Zeshuang</au><au>Ye, Hanfang</au><au>Liu, Haixin</au><au>Liu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>38</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The stochastic energy management (SEM) of power systems is computationally intractable due to its randomness, nonconvexity, and nonlinearity. To solve this problem, a response surface method (RSM)-based approximate dynamic programming (ADP) algorithm is proposed in this paper. Since the value function can be directly obtained by RSM, the proposed algorithm does not need to iteratively approach them as existing ADP algorithms, which facilitates reducing the computing time. In addition, an improved generalized polynomial chaos (IgPC) method (i.e., an extension of RSM) is proposed to calculate the expectation of the value function of ADP in the stochastic environment. Compared with the Monte Carlo method, which is commonly used in existing ADP algorithms, IgPC requires fewer sampling scenarios while providing similar results. Simulation results with two modified IEEE test systems and a real 2778-bus system demonstrate the effectiveness of the proposed algorithm in terms of accuracy and computation efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3227345</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-11, Vol.38 (6), p.1-13
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2022_3227345
source IEEE Electronic Library (IEL)
subjects Algorithms
Chebyshev approximation
Computing time
Dynamic programming
Energy management
Heuristic algorithms
improved approximate dynamic programming
improved generalized polynomial chaos
Monte Carlo simulation
Polynomials
Power system dynamics
Power systems
Randomness
response surface method
Response surface methodology
Stochastic energy management
System effectiveness
Uncertainty
title RSM-Based Approximate Dynamic Programming for Stochastic Energy Management of Power Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSM-Based%20Approximate%20Dynamic%20Programming%20for%20Stochastic%20Energy%20Management%20of%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhuo,%20Yelin&rft.date=2023-11-01&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3227345&rft_dat=%3Cproquest_RIE%3E2879378083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879378083&rft_id=info:pmid/&rft_ieee_id=9973395&rfr_iscdi=true