Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems

In this paper, a quadratic Taylor expansion-based approximate dynamic programming (QTE-ADP) algorithm is proposed for the decentralized solution of multi-area AC-optimal power flow (MA-ACOPF). Different from traditional ADP algorithms, the proposed algorithm does not need to approximate the value fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-09, Vol.38 (5), p.4940-4949
Hauptverfasser: Ye, Hanfang, Zhu, Jianquan, Chen, Jiajun, Wang, Zeshuang, Zhuo, Yelin, Liu, Haixin, Liu, Mingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4949
container_issue 5
container_start_page 4940
container_title IEEE transactions on power systems
container_volume 38
creator Ye, Hanfang
Zhu, Jianquan
Chen, Jiajun
Wang, Zeshuang
Zhuo, Yelin
Liu, Haixin
Liu, Mingbo
description In this paper, a quadratic Taylor expansion-based approximate dynamic programming (QTE-ADP) algorithm is proposed for the decentralized solution of multi-area AC-optimal power flow (MA-ACOPF). Different from traditional ADP algorithms, the proposed algorithm does not need to approximate the value function via a given function structure, but directly obtains the quadratic Taylor expansion (QTE) of value function based on KKT conditions. Moreover, compared with the commonly used linearized value function approximation techniques, the information used to approximate the value function is also extended from first order to second order in the proposed algorithm, which helps to improve the accuracy and efficiency of ADP. When using QTE-ADP to solve the MA-ACOPF problem, only the boundary voltage information needs to be interchanged between adjacent areas, which facilitates preserving the information privacy and decision independence of each area. Numerical simulations on several test systems demonstrate that the proposed algorithm has good performance in terms of accuracy, efficiency, and adaptability.
doi_str_mv 10.1109/TPWRS.2022.3217871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3217871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931986</ieee_id><sourcerecordid>2853023932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e3fed347fdeae9ec3d36003b72caac435ba935fb344a0f4c8d731d40b8c1e1373</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrF9uRhL0sfgFTUQotYRq4zqVLlUexENPDzpBSxmsXcM6N7CLnmbMA5U3erxfvrciCYEAMQPJIRPyE9HgTSY2GkTkmPSRl4UgXsnFw4t2WMhd2iR75fGp1YXWeGrnSbV5ZO9jtduqwqvXvtMKHD3c5W-6zQNdJxW-qiiy5stbG6KLJyQ9OOmTZ53tIxGixrq_Ps68CNvPliSquUPjd5nXlDi5ouqk-0dNm6Ggt3Sc5SnTu8-pt98jadrEaP3mz-8DQazjwj_LD2EFJMwI_SBDUqNJBAyBisI2G0Nj4Ea60gSNfg-5qlvpFJBDzx2Voajhwi6JPb492uyEeDro63VWPL7mUsZABMgALRpcQxZWzlnMU03tmutW1jzuKD5PhXcnyQHP9J7qCbI5Qh4j-gFHAlQ_gB7vN6kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853023932</pqid></control><display><type>article</type><title>Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Hanfang ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Zhuo, Yelin ; Liu, Haixin ; Liu, Mingbo</creator><creatorcontrib>Ye, Hanfang ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Zhuo, Yelin ; Liu, Haixin ; Liu, Mingbo</creatorcontrib><description>In this paper, a quadratic Taylor expansion-based approximate dynamic programming (QTE-ADP) algorithm is proposed for the decentralized solution of multi-area AC-optimal power flow (MA-ACOPF). Different from traditional ADP algorithms, the proposed algorithm does not need to approximate the value function via a given function structure, but directly obtains the quadratic Taylor expansion (QTE) of value function based on KKT conditions. Moreover, compared with the commonly used linearized value function approximation techniques, the information used to approximate the value function is also extended from first order to second order in the proposed algorithm, which helps to improve the accuracy and efficiency of ADP. When using QTE-ADP to solve the MA-ACOPF problem, only the boundary voltage information needs to be interchanged between adjacent areas, which facilitates preserving the information privacy and decision independence of each area. Numerical simulations on several test systems demonstrate that the proposed algorithm has good performance in terms of accuracy, efficiency, and adaptability.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3217871</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC-OPF ; Accuracy ; Algorithms ; approximate dynamic programming ; Approximation algorithms ; decentralized optimization ; Dynamic programming ; Electric power systems ; Function approximation ; Generators ; Heuristic algorithms ; Load flow ; Mathematical models ; multi-area power systems ; Power flow ; quadratic Taylor expansion ; Taylor series ; Voltage</subject><ispartof>IEEE transactions on power systems, 2023-09, Vol.38 (5), p.4940-4949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e3fed347fdeae9ec3d36003b72caac435ba935fb344a0f4c8d731d40b8c1e1373</cites><orcidid>0000-0001-9097-9045 ; 0000-0001-8084-7292 ; 0000-0001-6701-4018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9931986$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><title>Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this paper, a quadratic Taylor expansion-based approximate dynamic programming (QTE-ADP) algorithm is proposed for the decentralized solution of multi-area AC-optimal power flow (MA-ACOPF). Different from traditional ADP algorithms, the proposed algorithm does not need to approximate the value function via a given function structure, but directly obtains the quadratic Taylor expansion (QTE) of value function based on KKT conditions. Moreover, compared with the commonly used linearized value function approximation techniques, the information used to approximate the value function is also extended from first order to second order in the proposed algorithm, which helps to improve the accuracy and efficiency of ADP. When using QTE-ADP to solve the MA-ACOPF problem, only the boundary voltage information needs to be interchanged between adjacent areas, which facilitates preserving the information privacy and decision independence of each area. Numerical simulations on several test systems demonstrate that the proposed algorithm has good performance in terms of accuracy, efficiency, and adaptability.</description><subject>AC-OPF</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>approximate dynamic programming</subject><subject>Approximation algorithms</subject><subject>decentralized optimization</subject><subject>Dynamic programming</subject><subject>Electric power systems</subject><subject>Function approximation</subject><subject>Generators</subject><subject>Heuristic algorithms</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>multi-area power systems</subject><subject>Power flow</subject><subject>quadratic Taylor expansion</subject><subject>Taylor series</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrF9uRhL0sfgFTUQotYRq4zqVLlUexENPDzpBSxmsXcM6N7CLnmbMA5U3erxfvrciCYEAMQPJIRPyE9HgTSY2GkTkmPSRl4UgXsnFw4t2WMhd2iR75fGp1YXWeGrnSbV5ZO9jtduqwqvXvtMKHD3c5W-6zQNdJxW-qiiy5stbG6KLJyQ9OOmTZ53tIxGixrq_Ps68CNvPliSquUPjd5nXlDi5ouqk-0dNm6Ggt3Sc5SnTu8-pt98jadrEaP3mz-8DQazjwj_LD2EFJMwI_SBDUqNJBAyBisI2G0Nj4Ea60gSNfg-5qlvpFJBDzx2Voajhwi6JPb492uyEeDro63VWPL7mUsZABMgALRpcQxZWzlnMU03tmutW1jzuKD5PhXcnyQHP9J7qCbI5Qh4j-gFHAlQ_gB7vN6kQ</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Ye, Hanfang</creator><creator>Zhu, Jianquan</creator><creator>Chen, Jiajun</creator><creator>Wang, Zeshuang</creator><creator>Zhuo, Yelin</creator><creator>Liu, Haixin</creator><creator>Liu, Mingbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid></search><sort><creationdate>202309</creationdate><title>Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems</title><author>Ye, Hanfang ; Zhu, Jianquan ; Chen, Jiajun ; Wang, Zeshuang ; Zhuo, Yelin ; Liu, Haixin ; Liu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e3fed347fdeae9ec3d36003b72caac435ba935fb344a0f4c8d731d40b8c1e1373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC-OPF</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>approximate dynamic programming</topic><topic>Approximation algorithms</topic><topic>decentralized optimization</topic><topic>Dynamic programming</topic><topic>Electric power systems</topic><topic>Function approximation</topic><topic>Generators</topic><topic>Heuristic algorithms</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>multi-area power systems</topic><topic>Power flow</topic><topic>quadratic Taylor expansion</topic><topic>Taylor series</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hanfang</creatorcontrib><creatorcontrib>Zhu, Jianquan</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Wang, Zeshuang</creatorcontrib><creatorcontrib>Zhuo, Yelin</creatorcontrib><creatorcontrib>Liu, Haixin</creatorcontrib><creatorcontrib>Liu, Mingbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Hanfang</au><au>Zhu, Jianquan</au><au>Chen, Jiajun</au><au>Wang, Zeshuang</au><au>Zhuo, Yelin</au><au>Liu, Haixin</au><au>Liu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-09</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>4940</spage><epage>4949</epage><pages>4940-4949</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this paper, a quadratic Taylor expansion-based approximate dynamic programming (QTE-ADP) algorithm is proposed for the decentralized solution of multi-area AC-optimal power flow (MA-ACOPF). Different from traditional ADP algorithms, the proposed algorithm does not need to approximate the value function via a given function structure, but directly obtains the quadratic Taylor expansion (QTE) of value function based on KKT conditions. Moreover, compared with the commonly used linearized value function approximation techniques, the information used to approximate the value function is also extended from first order to second order in the proposed algorithm, which helps to improve the accuracy and efficiency of ADP. When using QTE-ADP to solve the MA-ACOPF problem, only the boundary voltage information needs to be interchanged between adjacent areas, which facilitates preserving the information privacy and decision independence of each area. Numerical simulations on several test systems demonstrate that the proposed algorithm has good performance in terms of accuracy, efficiency, and adaptability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3217871</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9097-9045</orcidid><orcidid>https://orcid.org/0000-0001-8084-7292</orcidid><orcidid>https://orcid.org/0000-0001-6701-4018</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-09, Vol.38 (5), p.4940-4949
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2022_3217871
source IEEE Electronic Library (IEL)
subjects AC-OPF
Accuracy
Algorithms
approximate dynamic programming
Approximation algorithms
decentralized optimization
Dynamic programming
Electric power systems
Function approximation
Generators
Heuristic algorithms
Load flow
Mathematical models
multi-area power systems
Power flow
quadratic Taylor expansion
Taylor series
Voltage
title Quadratic Taylor Expansion-Based Approximate Dynamic Programming for Fully Decentralized AC-OPF of Multi-Area Power Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Taylor%20Expansion-Based%20Approximate%20Dynamic%20Programming%20for%20Fully%20Decentralized%20AC-OPF%20of%20Multi-Area%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ye,%20Hanfang&rft.date=2023-09&rft.volume=38&rft.issue=5&rft.spage=4940&rft.epage=4949&rft.pages=4940-4949&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3217871&rft_dat=%3Cproquest_RIE%3E2853023932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853023932&rft_id=info:pmid/&rft_ieee_id=9931986&rfr_iscdi=true