Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion

The linearization of the power flow equation is widely used in power industry. Existing linearization approaches are generally regarded as nonlinear state variable space transformation, where the original power flow equation can be approximately reformulated as the linear forms in transformed state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-09, Vol.38 (5), p.4617-4627
Hauptverfasser: Fan, Zhexin, Yang, Zhifang, Yu, Juan, Morstyn, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4627
container_issue 5
container_start_page 4617
container_title IEEE transactions on power systems
container_volume 38
creator Fan, Zhexin
Yang, Zhifang
Yu, Juan
Morstyn, Thomas
description The linearization of the power flow equation is widely used in power industry. Existing linearization approaches are generally regarded as nonlinear state variable space transformation, where the original power flow equation can be approximately reformulated as the linear forms in transformed state variable spaces. However, the optimality of linear power flow equations cannot be theoretically compared in different spaces and is only verified based on case studies. In this paper, based on Legendre polynomial expansion, power flow equations are uniformly transformed into a single state variable space, where dimensions correspond to certain orders of Legendre expansion. Through component analysis of power flow equations on each dimension, we find that the accuracy of the linear power flow equation can be improved by formulating an appropriate state variable space transformation to reduce Legendre component loss. Based on this, a linearization method minimizing Legendre component loss is formulated. Compared with the regular case-based linearization, the proposed method does not depend on empirical data, and can theoretically guide the selection of the linear power flow equation within the specified operating bound. The accuracy performance is verified in OPF calculation based on numerous IEEE and Polish test systems.
doi_str_mv 10.1109/TPWRS.2022.3211397
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3211397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9907890</ieee_id><sourcerecordid>2853023693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1ac72c86c090d4a4fe8cbf5ee830f29aea90be2a7ab8c5bb775996b9fc04db63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKdONl-7x1paLQQsWvAYNpuJpCS76W5izb83tcXTDMzzDjMPIfc-zHwfxNN28_n-MWPA2Cxgvh-I5IJM_CjiHsSJuCQT4DzyuIjgmtw4twOAeBxMSLswTWs06o7OtawHVzkqdUHnSvVWqoGum9aab2yOhClpWmmUlm7MAS1d1eZAl_tedpXR9Fk6LOjYpPiFurA4UvWgTVPJmi5_WqndiN2Sq1LWDu_OdUq2q-V28eqlby_rxTz1FAvjzvOlSpjisQIBRSjDErnKywiRB1AyIVEKyJHJROZcRXmeJJEQcS5KBWGRx8GUPJ7Wjtfve3RdtjO9HT90GeNRACyIRTBS7EQpa5yzWGatrRpph8yH7Cg2-xObHcVmZ7Fj6OEUqhDxPyAEJFxA8AsA8Hcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853023693</pqid></control><display><type>article</type><title>Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Zhexin ; Yang, Zhifang ; Yu, Juan ; Morstyn, Thomas</creator><creatorcontrib>Fan, Zhexin ; Yang, Zhifang ; Yu, Juan ; Morstyn, Thomas</creatorcontrib><description>The linearization of the power flow equation is widely used in power industry. Existing linearization approaches are generally regarded as nonlinear state variable space transformation, where the original power flow equation can be approximately reformulated as the linear forms in transformed state variable spaces. However, the optimality of linear power flow equations cannot be theoretically compared in different spaces and is only verified based on case studies. In this paper, based on Legendre polynomial expansion, power flow equations are uniformly transformed into a single state variable space, where dimensions correspond to certain orders of Legendre expansion. Through component analysis of power flow equations on each dimension, we find that the accuracy of the linear power flow equation can be improved by formulating an appropriate state variable space transformation to reduce Legendre component loss. Based on this, a linearization method minimizing Legendre component loss is formulated. Compared with the regular case-based linearization, the proposed method does not depend on empirical data, and can theoretically guide the selection of the linear power flow equation within the specified operating bound. The accuracy performance is verified in OPF calculation based on numerous IEEE and Polish test systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3211397</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Empirical analysis ; Flow equations ; Iterative methods ; Legendre polynomial expansion ; Linearization ; linearization method ; Load flow ; Mathematical analysis ; Mathematical models ; operating bound ; Polynomials ; Power flow ; Power flow equation ; Power systems ; State variable ; Symbols ; Taylor series expansion ; Transformations (mathematics) ; Transforms ; Voltage</subject><ispartof>IEEE transactions on power systems, 2023-09, Vol.38 (5), p.4617-4627</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1ac72c86c090d4a4fe8cbf5ee830f29aea90be2a7ab8c5bb775996b9fc04db63</cites><orcidid>0000-0003-2781-9588 ; 0000-0002-0200-1248 ; 0000-0001-6899-8303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9907890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9907890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Zhexin</creatorcontrib><creatorcontrib>Yang, Zhifang</creatorcontrib><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><title>Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The linearization of the power flow equation is widely used in power industry. Existing linearization approaches are generally regarded as nonlinear state variable space transformation, where the original power flow equation can be approximately reformulated as the linear forms in transformed state variable spaces. However, the optimality of linear power flow equations cannot be theoretically compared in different spaces and is only verified based on case studies. In this paper, based on Legendre polynomial expansion, power flow equations are uniformly transformed into a single state variable space, where dimensions correspond to certain orders of Legendre expansion. Through component analysis of power flow equations on each dimension, we find that the accuracy of the linear power flow equation can be improved by formulating an appropriate state variable space transformation to reduce Legendre component loss. Based on this, a linearization method minimizing Legendre component loss is formulated. Compared with the regular case-based linearization, the proposed method does not depend on empirical data, and can theoretically guide the selection of the linear power flow equation within the specified operating bound. The accuracy performance is verified in OPF calculation based on numerous IEEE and Polish test systems.</description><subject>Accuracy</subject><subject>Empirical analysis</subject><subject>Flow equations</subject><subject>Iterative methods</subject><subject>Legendre polynomial expansion</subject><subject>Linearization</subject><subject>linearization method</subject><subject>Load flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>operating bound</subject><subject>Polynomials</subject><subject>Power flow</subject><subject>Power flow equation</subject><subject>Power systems</subject><subject>State variable</subject><subject>Symbols</subject><subject>Taylor series expansion</subject><subject>Transformations (mathematics)</subject><subject>Transforms</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKdONl-7x1paLQQsWvAYNpuJpCS76W5izb83tcXTDMzzDjMPIfc-zHwfxNN28_n-MWPA2Cxgvh-I5IJM_CjiHsSJuCQT4DzyuIjgmtw4twOAeBxMSLswTWs06o7OtawHVzkqdUHnSvVWqoGum9aab2yOhClpWmmUlm7MAS1d1eZAl_tedpXR9Fk6LOjYpPiFurA4UvWgTVPJmi5_WqndiN2Sq1LWDu_OdUq2q-V28eqlby_rxTz1FAvjzvOlSpjisQIBRSjDErnKywiRB1AyIVEKyJHJROZcRXmeJJEQcS5KBWGRx8GUPJ7Wjtfve3RdtjO9HT90GeNRACyIRTBS7EQpa5yzWGatrRpph8yH7Cg2-xObHcVmZ7Fj6OEUqhDxPyAEJFxA8AsA8Hcc</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Fan, Zhexin</creator><creator>Yang, Zhifang</creator><creator>Yu, Juan</creator><creator>Morstyn, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid><orcidid>https://orcid.org/0000-0002-0200-1248</orcidid><orcidid>https://orcid.org/0000-0001-6899-8303</orcidid></search><sort><creationdate>202309</creationdate><title>Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion</title><author>Fan, Zhexin ; Yang, Zhifang ; Yu, Juan ; Morstyn, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1ac72c86c090d4a4fe8cbf5ee830f29aea90be2a7ab8c5bb775996b9fc04db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Empirical analysis</topic><topic>Flow equations</topic><topic>Iterative methods</topic><topic>Legendre polynomial expansion</topic><topic>Linearization</topic><topic>linearization method</topic><topic>Load flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>operating bound</topic><topic>Polynomials</topic><topic>Power flow</topic><topic>Power flow equation</topic><topic>Power systems</topic><topic>State variable</topic><topic>Symbols</topic><topic>Taylor series expansion</topic><topic>Transformations (mathematics)</topic><topic>Transforms</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhexin</creatorcontrib><creatorcontrib>Yang, Zhifang</creatorcontrib><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Zhexin</au><au>Yang, Zhifang</au><au>Yu, Juan</au><au>Morstyn, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-09</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>4617</spage><epage>4627</epage><pages>4617-4627</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The linearization of the power flow equation is widely used in power industry. Existing linearization approaches are generally regarded as nonlinear state variable space transformation, where the original power flow equation can be approximately reformulated as the linear forms in transformed state variable spaces. However, the optimality of linear power flow equations cannot be theoretically compared in different spaces and is only verified based on case studies. In this paper, based on Legendre polynomial expansion, power flow equations are uniformly transformed into a single state variable space, where dimensions correspond to certain orders of Legendre expansion. Through component analysis of power flow equations on each dimension, we find that the accuracy of the linear power flow equation can be improved by formulating an appropriate state variable space transformation to reduce Legendre component loss. Based on this, a linearization method minimizing Legendre component loss is formulated. Compared with the regular case-based linearization, the proposed method does not depend on empirical data, and can theoretically guide the selection of the linear power flow equation within the specified operating bound. The accuracy performance is verified in OPF calculation based on numerous IEEE and Polish test systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3211397</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid><orcidid>https://orcid.org/0000-0002-0200-1248</orcidid><orcidid>https://orcid.org/0000-0001-6899-8303</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-09, Vol.38 (5), p.4617-4627
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2022_3211397
source IEEE Electronic Library (IEL)
subjects Accuracy
Empirical analysis
Flow equations
Iterative methods
Legendre polynomial expansion
Linearization
linearization method
Load flow
Mathematical analysis
Mathematical models
operating bound
Polynomials
Power flow
Power flow equation
Power systems
State variable
Symbols
Taylor series expansion
Transformations (mathematics)
Transforms
Voltage
title Component Analysis and Accuracy Improvement of Linear Power Flow Equation Based on Legendre Polynomial Expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component%20Analysis%20and%20Accuracy%20Improvement%20of%20Linear%20Power%20Flow%20Equation%20Based%20on%20Legendre%20Polynomial%20Expansion&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Fan,%20Zhexin&rft.date=2023-09&rft.volume=38&rft.issue=5&rft.spage=4617&rft.epage=4627&rft.pages=4617-4627&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3211397&rft_dat=%3Cproquest_RIE%3E2853023693%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853023693&rft_id=info:pmid/&rft_ieee_id=9907890&rfr_iscdi=true