A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems

This paper presents a novel real-time machinelearning-based framework for remedial control action (RCA) prediction to prevent transient instability in interconnected power systems. Due to the fast dynamics of rotor angle oscillations and considering communication latencies, there is limited time to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-01, Vol.38 (1), p.242-255
Hauptverfasser: Naderi, Soheil, Javadi, Masoud, Mazhari, Mahdi, Chung, C. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 242
container_title IEEE transactions on power systems
container_volume 38
creator Naderi, Soheil
Javadi, Masoud
Mazhari, Mahdi
Chung, C. Y.
description This paper presents a novel real-time machinelearning-based framework for remedial control action (RCA) prediction to prevent transient instability in interconnected power systems. Due to the fast dynamics of rotor angle oscillations and considering communication latencies, there is limited time to compute RCA, making RCA calculation impractical in events quickly evolving into transient instability. The proposed algorithm predicts RCA based on pre-fault and post-fault voltage values of generator buses. To cover credible scenarios, reduce prediction complexities, and increase accuracy, a micro model strategy is employed in which independent models are built for each transmission line of the system. The proposed framework consists of three main modules: stability prediction, coherency prediction, and RCA prediction. In the coherency prediction module, a time-varying algorithm is developed that determines the optimal number of generator groups and prevents unnecessarily overestimated RCAs. For each of the considered scenarios and obtained coherency patterns, a mixed-integer linear programming (MILP) model is utilized to extract the islanding and load shedding patterns considering transient stability constraints. The effectiveness of the proposed approach is demonstrated on the IEEE 39-bus system and the 74-bus Nordic test system, followed by a discussion of results.
doi_str_mv 10.1109/TPWRS.2022.3165210
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3165210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750882</ieee_id><sourcerecordid>2757177629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-fcbe3f22c3780be4d0fa321978052c55065695f996637de826f1a6d71b7d684a3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWw7Wi7Xk4iSoKRAIbLpXSnOmQttiOExB_vBOLVyZv34yQPQreU9Cgl6mE-WUxnPUYY66VUcEbJGepQzrOECKnOUYdkGU8yxckluopxRQgRrdFBPzl-1eazcoDHoIOr3EfyqCOUeBh0DTsfvrD1AQ91bPAkQFmZpvIOe4sXVQlJHkDjKdStodd44F0T_Brnh1DElcMj10Aw3jkwTbs68TsIeLaPDdTxGl1YvY5wc7pd9D58mg9ekvHb82iQjxPDGG8Sa5aQWsZMKjOyhH5JrE4ZVa3izHBOBBeKW6WESGUJGROWalFKupSlyPo67aL74-4m-O8txKZY-W1w7cuCSS6plIKpNsWOKRN8jAFssQlVrcO-oKT4o1wcKBd_lIsT5bZ0dyxVAPBfUJK3wFn6C-CaeUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757177629</pqid></control><display><type>article</type><title>A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Naderi, Soheil ; Javadi, Masoud ; Mazhari, Mahdi ; Chung, C. Y.</creator><creatorcontrib>Naderi, Soheil ; Javadi, Masoud ; Mazhari, Mahdi ; Chung, C. Y.</creatorcontrib><description>This paper presents a novel real-time machinelearning-based framework for remedial control action (RCA) prediction to prevent transient instability in interconnected power systems. Due to the fast dynamics of rotor angle oscillations and considering communication latencies, there is limited time to compute RCA, making RCA calculation impractical in events quickly evolving into transient instability. The proposed algorithm predicts RCA based on pre-fault and post-fault voltage values of generator buses. To cover credible scenarios, reduce prediction complexities, and increase accuracy, a micro model strategy is employed in which independent models are built for each transmission line of the system. The proposed framework consists of three main modules: stability prediction, coherency prediction, and RCA prediction. In the coherency prediction module, a time-varying algorithm is developed that determines the optimal number of generator groups and prevents unnecessarily overestimated RCAs. For each of the considered scenarios and obtained coherency patterns, a mixed-integer linear programming (MILP) model is utilized to extract the islanding and load shedding patterns considering transient stability constraints. The effectiveness of the proposed approach is demonstrated on the IEEE 39-bus system and the 74-bus Nordic test system, followed by a discussion of results.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3165210</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coherence ; Coherent generators ; Computational modeling ; Dynamic stability ; Electric power systems ; Generators ; Integer programming ; Linear programming ; Load shedding ; Machine learning ; Mixed integer ; Model accuracy ; Modules ; neural network ; Power system stability ; Power transmission lines ; Predictive models ; remedial control actions ; Transient analysis ; Transient stability ; Transmission lines</subject><ispartof>IEEE transactions on power systems, 2023-01, Vol.38 (1), p.242-255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-fcbe3f22c3780be4d0fa321978052c55065695f996637de826f1a6d71b7d684a3</citedby><cites>FETCH-LOGICAL-c225t-fcbe3f22c3780be4d0fa321978052c55065695f996637de826f1a6d71b7d684a3</cites><orcidid>0000-0001-6607-2240 ; 0000-0002-0901-8405 ; 0000-0003-1654-9164 ; 0000-0001-5973-4509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9750882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naderi, Soheil</creatorcontrib><creatorcontrib>Javadi, Masoud</creatorcontrib><creatorcontrib>Mazhari, Mahdi</creatorcontrib><creatorcontrib>Chung, C. Y.</creatorcontrib><title>A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a novel real-time machinelearning-based framework for remedial control action (RCA) prediction to prevent transient instability in interconnected power systems. Due to the fast dynamics of rotor angle oscillations and considering communication latencies, there is limited time to compute RCA, making RCA calculation impractical in events quickly evolving into transient instability. The proposed algorithm predicts RCA based on pre-fault and post-fault voltage values of generator buses. To cover credible scenarios, reduce prediction complexities, and increase accuracy, a micro model strategy is employed in which independent models are built for each transmission line of the system. The proposed framework consists of three main modules: stability prediction, coherency prediction, and RCA prediction. In the coherency prediction module, a time-varying algorithm is developed that determines the optimal number of generator groups and prevents unnecessarily overestimated RCAs. For each of the considered scenarios and obtained coherency patterns, a mixed-integer linear programming (MILP) model is utilized to extract the islanding and load shedding patterns considering transient stability constraints. The effectiveness of the proposed approach is demonstrated on the IEEE 39-bus system and the 74-bus Nordic test system, followed by a discussion of results.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Coherent generators</subject><subject>Computational modeling</subject><subject>Dynamic stability</subject><subject>Electric power systems</subject><subject>Generators</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Load shedding</subject><subject>Machine learning</subject><subject>Mixed integer</subject><subject>Model accuracy</subject><subject>Modules</subject><subject>neural network</subject><subject>Power system stability</subject><subject>Power transmission lines</subject><subject>Predictive models</subject><subject>remedial control actions</subject><subject>Transient analysis</subject><subject>Transient stability</subject><subject>Transmission lines</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWw7Wi7Xk4iSoKRAIbLpXSnOmQttiOExB_vBOLVyZv34yQPQreU9Cgl6mE-WUxnPUYY66VUcEbJGepQzrOECKnOUYdkGU8yxckluopxRQgRrdFBPzl-1eazcoDHoIOr3EfyqCOUeBh0DTsfvrD1AQ91bPAkQFmZpvIOe4sXVQlJHkDjKdStodd44F0T_Brnh1DElcMj10Aw3jkwTbs68TsIeLaPDdTxGl1YvY5wc7pd9D58mg9ekvHb82iQjxPDGG8Sa5aQWsZMKjOyhH5JrE4ZVa3izHBOBBeKW6WESGUJGROWalFKupSlyPo67aL74-4m-O8txKZY-W1w7cuCSS6plIKpNsWOKRN8jAFssQlVrcO-oKT4o1wcKBd_lIsT5bZ0dyxVAPBfUJK3wFn6C-CaeUA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Naderi, Soheil</creator><creator>Javadi, Masoud</creator><creator>Mazhari, Mahdi</creator><creator>Chung, C. Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6607-2240</orcidid><orcidid>https://orcid.org/0000-0002-0901-8405</orcidid><orcidid>https://orcid.org/0000-0003-1654-9164</orcidid><orcidid>https://orcid.org/0000-0001-5973-4509</orcidid></search><sort><creationdate>202301</creationdate><title>A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems</title><author>Naderi, Soheil ; Javadi, Masoud ; Mazhari, Mahdi ; Chung, C. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-fcbe3f22c3780be4d0fa321978052c55065695f996637de826f1a6d71b7d684a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Coherent generators</topic><topic>Computational modeling</topic><topic>Dynamic stability</topic><topic>Electric power systems</topic><topic>Generators</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Load shedding</topic><topic>Machine learning</topic><topic>Mixed integer</topic><topic>Model accuracy</topic><topic>Modules</topic><topic>neural network</topic><topic>Power system stability</topic><topic>Power transmission lines</topic><topic>Predictive models</topic><topic>remedial control actions</topic><topic>Transient analysis</topic><topic>Transient stability</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naderi, Soheil</creatorcontrib><creatorcontrib>Javadi, Masoud</creatorcontrib><creatorcontrib>Mazhari, Mahdi</creatorcontrib><creatorcontrib>Chung, C. Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naderi, Soheil</au><au>Javadi, Masoud</au><au>Mazhari, Mahdi</au><au>Chung, C. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>242</spage><epage>255</epage><pages>242-255</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a novel real-time machinelearning-based framework for remedial control action (RCA) prediction to prevent transient instability in interconnected power systems. Due to the fast dynamics of rotor angle oscillations and considering communication latencies, there is limited time to compute RCA, making RCA calculation impractical in events quickly evolving into transient instability. The proposed algorithm predicts RCA based on pre-fault and post-fault voltage values of generator buses. To cover credible scenarios, reduce prediction complexities, and increase accuracy, a micro model strategy is employed in which independent models are built for each transmission line of the system. The proposed framework consists of three main modules: stability prediction, coherency prediction, and RCA prediction. In the coherency prediction module, a time-varying algorithm is developed that determines the optimal number of generator groups and prevents unnecessarily overestimated RCAs. For each of the considered scenarios and obtained coherency patterns, a mixed-integer linear programming (MILP) model is utilized to extract the islanding and load shedding patterns considering transient stability constraints. The effectiveness of the proposed approach is demonstrated on the IEEE 39-bus system and the 74-bus Nordic test system, followed by a discussion of results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3165210</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6607-2240</orcidid><orcidid>https://orcid.org/0000-0002-0901-8405</orcidid><orcidid>https://orcid.org/0000-0003-1654-9164</orcidid><orcidid>https://orcid.org/0000-0001-5973-4509</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-01, Vol.38 (1), p.242-255
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2022_3165210
source IEEE Electronic Library (IEL)
subjects Algorithms
Coherence
Coherent generators
Computational modeling
Dynamic stability
Electric power systems
Generators
Integer programming
Linear programming
Load shedding
Machine learning
Mixed integer
Model accuracy
Modules
neural network
Power system stability
Power transmission lines
Predictive models
remedial control actions
Transient analysis
Transient stability
Transmission lines
title A Machine Learning-Based Framework for Fast Prediction of Wide-Area Remedial Control Actions in Interconnected Power Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning-Based%20Framework%20for%20Fast%20Prediction%20of%20Wide-Area%20Remedial%20Control%20Actions%20in%20Interconnected%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Naderi,%20Soheil&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=242&rft.epage=255&rft.pages=242-255&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3165210&rft_dat=%3Cproquest_RIE%3E2757177629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757177629&rft_id=info:pmid/&rft_ieee_id=9750882&rfr_iscdi=true