Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation
The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2022-11, Vol.37 (6), p.4773-4784 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4784 |
---|---|
container_issue | 6 |
container_start_page | 4773 |
container_title | IEEE transactions on power systems |
container_volume | 37 |
creator | Talkington, Samuel Grijalva, Santiago Reno, Matthew J. Azzolini, Joseph A. |
description | The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR. |
doi_str_mv | 10.1109/TPWRS.2022.3144676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3144676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693176</ieee_id><sourcerecordid>2728570884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF-KPnfmT5M2jzKnDoaObepjSNPb2TGbmWQTv72ZHULgkpxz7s39IXRJ8IAQLG8X0_fZfEAxpQNGskzk4gj1COdFikUuj1EPFwVPC8nxKTrzfoUxFlHooee5XWuXTN-ScbsDF8AlM9AmNDtIpvY7Xu8br5dLB0sdGtsmuq2SoW2Ds-tkDiE07TIZ-dB8_snn6KTWaw8Xh9pHrw-jxfApnbw8jod3k9QwIUJaZ3kmdVlh4DXwTJcsnopqmmEDXBNWMVkVkphCi_0Tk1jIKs9xSUvBRcn66Lrra-No5U0TwHwY27ZggiJFRikj0XTTmTbOfm3BB7WyW9fGfyma04LnEUoWXbRzGWe9d1CrjYvbuB9FsNrDVX9w1R6uOsCNoasu1ADAf0AKyUhUfwHwBXWj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570884</pqid></control><display><type>article</type><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A.</creator><creatorcontrib>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3144676</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced metering infrastructure ; Algorithms ; Curve fitting ; Data models ; Data-driven control ; Disaggregation ; Errors ; Estimation ; Feature extraction ; Inverters ; Load modeling ; Maximum likelihood estimation ; Optimization ; Photovoltaic cells ; Power control ; Reactive power ; Reactive power control ; System identification ; Voltage control</subject><ispartof>IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4773-4784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</citedby><cites>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</cites><orcidid>0000-0002-4885-0480 ; 0000-0001-9580-4156 ; 0000-0001-5768-8115 ; 0000000248850480 ; 0000000195804156 ; 0000000157688115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693176$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1842231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talkington, Samuel</creatorcontrib><creatorcontrib>Grijalva, Santiago</creatorcontrib><creatorcontrib>Reno, Matthew J.</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</description><subject>Advanced metering infrastructure</subject><subject>Algorithms</subject><subject>Curve fitting</subject><subject>Data models</subject><subject>Data-driven control</subject><subject>Disaggregation</subject><subject>Errors</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Inverters</subject><subject>Load modeling</subject><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Power control</subject><subject>Reactive power</subject><subject>Reactive power control</subject><subject>System identification</subject><subject>Voltage control</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF-KPnfmT5M2jzKnDoaObepjSNPb2TGbmWQTv72ZHULgkpxz7s39IXRJ8IAQLG8X0_fZfEAxpQNGskzk4gj1COdFikUuj1EPFwVPC8nxKTrzfoUxFlHooee5XWuXTN-ScbsDF8AlM9AmNDtIpvY7Xu8br5dLB0sdGtsmuq2SoW2Ds-tkDiE07TIZ-dB8_snn6KTWaw8Xh9pHrw-jxfApnbw8jod3k9QwIUJaZ3kmdVlh4DXwTJcsnopqmmEDXBNWMVkVkphCi_0Tk1jIKs9xSUvBRcn66Lrra-No5U0TwHwY27ZggiJFRikj0XTTmTbOfm3BB7WyW9fGfyma04LnEUoWXbRzGWe9d1CrjYvbuB9FsNrDVX9w1R6uOsCNoasu1ADAf0AKyUhUfwHwBXWj</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Talkington, Samuel</creator><creator>Grijalva, Santiago</creator><creator>Reno, Matthew J.</creator><creator>Azzolini, Joseph A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4885-0480</orcidid><orcidid>https://orcid.org/0000-0001-9580-4156</orcidid><orcidid>https://orcid.org/0000-0001-5768-8115</orcidid><orcidid>https://orcid.org/0000000248850480</orcidid><orcidid>https://orcid.org/0000000195804156</orcidid><orcidid>https://orcid.org/0000000157688115</orcidid></search><sort><creationdate>202211</creationdate><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><author>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced metering infrastructure</topic><topic>Algorithms</topic><topic>Curve fitting</topic><topic>Data models</topic><topic>Data-driven control</topic><topic>Disaggregation</topic><topic>Errors</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Inverters</topic><topic>Load modeling</topic><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Power control</topic><topic>Reactive power</topic><topic>Reactive power control</topic><topic>System identification</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talkington, Samuel</creatorcontrib><creatorcontrib>Grijalva, Santiago</creatorcontrib><creatorcontrib>Reno, Matthew J.</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talkington, Samuel</au><au>Grijalva, Santiago</au><au>Reno, Matthew J.</au><au>Azzolini, Joseph A.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-11</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>4773</spage><epage>4784</epage><pages>4773-4784</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3144676</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4885-0480</orcidid><orcidid>https://orcid.org/0000-0001-9580-4156</orcidid><orcidid>https://orcid.org/0000-0001-5768-8115</orcidid><orcidid>https://orcid.org/0000000248850480</orcidid><orcidid>https://orcid.org/0000000195804156</orcidid><orcidid>https://orcid.org/0000000157688115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4773-4784 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2022_3144676 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced metering infrastructure Algorithms Curve fitting Data models Data-driven control Disaggregation Errors Estimation Feature extraction Inverters Load modeling Maximum likelihood estimation Optimization Photovoltaic cells Power control Reactive power Reactive power control System identification Voltage control |
title | Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20PV%20Inverter%20Reactive%20Power%20Disaggregation%20and%20Control%20Setting%20Estimation&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Talkington,%20Samuel&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-11&rft.volume=37&rft.issue=6&rft.spage=4773&rft.epage=4784&rft.pages=4773-4784&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3144676&rft_dat=%3Cproquest_cross%3E2728570884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570884&rft_id=info:pmid/&rft_ieee_id=9693176&rfr_iscdi=true |