Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation

The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2022-11, Vol.37 (6), p.4773-4784
Hauptverfasser: Talkington, Samuel, Grijalva, Santiago, Reno, Matthew J., Azzolini, Joseph A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4784
container_issue 6
container_start_page 4773
container_title IEEE transactions on power systems
container_volume 37
creator Talkington, Samuel
Grijalva, Santiago
Reno, Matthew J.
Azzolini, Joseph A.
description The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.
doi_str_mv 10.1109/TPWRS.2022.3144676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2022_3144676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693176</ieee_id><sourcerecordid>2728570884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF-KPnfmT5M2jzKnDoaObepjSNPb2TGbmWQTv72ZHULgkpxz7s39IXRJ8IAQLG8X0_fZfEAxpQNGskzk4gj1COdFikUuj1EPFwVPC8nxKTrzfoUxFlHooee5XWuXTN-ScbsDF8AlM9AmNDtIpvY7Xu8br5dLB0sdGtsmuq2SoW2Ds-tkDiE07TIZ-dB8_snn6KTWaw8Xh9pHrw-jxfApnbw8jod3k9QwIUJaZ3kmdVlh4DXwTJcsnopqmmEDXBNWMVkVkphCi_0Tk1jIKs9xSUvBRcn66Lrra-No5U0TwHwY27ZggiJFRikj0XTTmTbOfm3BB7WyW9fGfyma04LnEUoWXbRzGWe9d1CrjYvbuB9FsNrDVX9w1R6uOsCNoasu1ADAf0AKyUhUfwHwBXWj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570884</pqid></control><display><type>article</type><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A.</creator><creatorcontrib>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3144676</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced metering infrastructure ; Algorithms ; Curve fitting ; Data models ; Data-driven control ; Disaggregation ; Errors ; Estimation ; Feature extraction ; Inverters ; Load modeling ; Maximum likelihood estimation ; Optimization ; Photovoltaic cells ; Power control ; Reactive power ; Reactive power control ; System identification ; Voltage control</subject><ispartof>IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4773-4784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</citedby><cites>FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</cites><orcidid>0000-0002-4885-0480 ; 0000-0001-9580-4156 ; 0000-0001-5768-8115 ; 0000000248850480 ; 0000000195804156 ; 0000000157688115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693176$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1842231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talkington, Samuel</creatorcontrib><creatorcontrib>Grijalva, Santiago</creatorcontrib><creatorcontrib>Reno, Matthew J.</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</description><subject>Advanced metering infrastructure</subject><subject>Algorithms</subject><subject>Curve fitting</subject><subject>Data models</subject><subject>Data-driven control</subject><subject>Disaggregation</subject><subject>Errors</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Inverters</subject><subject>Load modeling</subject><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Power control</subject><subject>Reactive power</subject><subject>Reactive power control</subject><subject>System identification</subject><subject>Voltage control</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF-KPnfmT5M2jzKnDoaObepjSNPb2TGbmWQTv72ZHULgkpxz7s39IXRJ8IAQLG8X0_fZfEAxpQNGskzk4gj1COdFikUuj1EPFwVPC8nxKTrzfoUxFlHooee5XWuXTN-ScbsDF8AlM9AmNDtIpvY7Xu8br5dLB0sdGtsmuq2SoW2Ds-tkDiE07TIZ-dB8_snn6KTWaw8Xh9pHrw-jxfApnbw8jod3k9QwIUJaZ3kmdVlh4DXwTJcsnopqmmEDXBNWMVkVkphCi_0Tk1jIKs9xSUvBRcn66Lrra-No5U0TwHwY27ZggiJFRikj0XTTmTbOfm3BB7WyW9fGfyma04LnEUoWXbRzGWe9d1CrjYvbuB9FsNrDVX9w1R6uOsCNoasu1ADAf0AKyUhUfwHwBXWj</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Talkington, Samuel</creator><creator>Grijalva, Santiago</creator><creator>Reno, Matthew J.</creator><creator>Azzolini, Joseph A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4885-0480</orcidid><orcidid>https://orcid.org/0000-0001-9580-4156</orcidid><orcidid>https://orcid.org/0000-0001-5768-8115</orcidid><orcidid>https://orcid.org/0000000248850480</orcidid><orcidid>https://orcid.org/0000000195804156</orcidid><orcidid>https://orcid.org/0000000157688115</orcidid></search><sort><creationdate>202211</creationdate><title>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</title><author>Talkington, Samuel ; Grijalva, Santiago ; Reno, Matthew J. ; Azzolini, Joseph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f4749abd0e5fe54ab3ab3d2a240ce5a13d39d891c8a640ce39069d770b2b656b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced metering infrastructure</topic><topic>Algorithms</topic><topic>Curve fitting</topic><topic>Data models</topic><topic>Data-driven control</topic><topic>Disaggregation</topic><topic>Errors</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Inverters</topic><topic>Load modeling</topic><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Power control</topic><topic>Reactive power</topic><topic>Reactive power control</topic><topic>System identification</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talkington, Samuel</creatorcontrib><creatorcontrib>Grijalva, Santiago</creatorcontrib><creatorcontrib>Reno, Matthew J.</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talkington, Samuel</au><au>Grijalva, Santiago</au><au>Reno, Matthew J.</au><au>Azzolini, Joseph A.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-11</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>4773</spage><epage>4784</epage><pages>4773-4784</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The wide variety of inverter control settings for solar photovoltaics (PV) causes the accurate knowledge of these settings to be difficult to obtain in practice. This paper addresses the problem of determining inverter reactive power control settings from net load advanced metering infrastructure (AMI) data. The estimation is first cast as fitting parameterized control curves. We argue for an intuitive and practical approach to preprocess the AMI data, which exposes the setting to be extracted. We then develop a more general approach with a data-driven reactive power disaggregation algorithm, reframing the problem as a maximum likelihood estimation for the native load reactive power. These methods form the first approach for reconstructing reactive power control settings of solar PV inverters from net load data. The constrained curve fitting algorithm is tested on 701 loads with behind-the-meter (BTM) PV systems with identical control settings. The settings are accurately reconstructed with mean absolute percentage errors between 0.425% and 2.870%. The disaggregation-based approach is then tested on 451 loads with variable BTM PV control settings. Different configurations of this algorithm reconstruct the PV inverter reactive power timeseries with root mean squared errors between 0.173 and 0.198 kVAR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3144676</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4885-0480</orcidid><orcidid>https://orcid.org/0000-0001-9580-4156</orcidid><orcidid>https://orcid.org/0000-0001-5768-8115</orcidid><orcidid>https://orcid.org/0000000248850480</orcidid><orcidid>https://orcid.org/0000000195804156</orcidid><orcidid>https://orcid.org/0000000157688115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4773-4784
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2022_3144676
source IEEE Electronic Library (IEL)
subjects Advanced metering infrastructure
Algorithms
Curve fitting
Data models
Data-driven control
Disaggregation
Errors
Estimation
Feature extraction
Inverters
Load modeling
Maximum likelihood estimation
Optimization
Photovoltaic cells
Power control
Reactive power
Reactive power control
System identification
Voltage control
title Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20PV%20Inverter%20Reactive%20Power%20Disaggregation%20and%20Control%20Setting%20Estimation&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Talkington,%20Samuel&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-11&rft.volume=37&rft.issue=6&rft.spage=4773&rft.epage=4784&rft.pages=4773-4784&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3144676&rft_dat=%3Cproquest_cross%3E2728570884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570884&rft_id=info:pmid/&rft_ieee_id=9693176&rfr_iscdi=true