Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach

In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2021-09, Vol.36 (5), p.4539-4550
Hauptverfasser: Constante F., Santiago G., Lopez, Juan Camilo, Rider, Marcos J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4550
container_issue 5
container_start_page 4539
container_title IEEE transactions on power systems
container_volume 36
creator Constante F., Santiago G.
Lopez, Juan Camilo
Rider, Marcos J.
description In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.
doi_str_mv 10.1109/TPWRS.2021.3056637
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2021_3056637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9345991</ieee_id><sourcerecordid>2562954236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pxix0tibqWsEhKoUPUYucm4NUrjYLssNx4dlyJOo9HMN7_mQ-iEkiGlRJ2_PM0mz8Oc5HTIiJCSFTtoQIUoMyILtYsGpCxFVipB9tFBCK-EEJkGA_T92Ee70i2egK6jfQf85D7A4ysbeh3rJZ7ZuNx0tYcIeOy66F3bgg94Gmy3wBpfet3Vy0x3TXbp1l2DR-3C-YStLvAIP8PKNmBsZxM-gVZ_6mhdh0d9752ul0doz-g2wPFfPUTTm-uX8V328Hh7Px49ZHWuRMygJCUnBgo5h5oLYJSWJVVcyEKmt4EzqorGGMWNZGSuqJKccEHBGKMb1rBDdLa9m2Lf1hBi9erWvkuRVS5kyuA5k2kr327V3oXgwVS9T3r8V0VJtTFd_ZquNqarP9MJOt1CFgD-AcW4UIqyH5gOev8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562954236</pqid></control><display><type>article</type><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</creator><creatorcontrib>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</creatorcontrib><description>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&amp;B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&amp;B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&amp;B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3056637</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Branch and bound algorithm ; Controllers ; discrete controllers ; Electric power systems ; lifted nonlinear cuts ; Linear matrix inequalities ; Matrices (mathematics) ; Matrix decomposition ; Mixed integer ; optimal reactive power dispatch ; Power dispatch ; Power generation dispatch ; Reactive power ; Relaxation methods ; Semidefinite programming ; semidefinite relaxation ; Steady-state ; Transformers</subject><ispartof>IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4539-4550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</citedby><cites>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</cites><orcidid>0000-0001-5646-8612 ; 0000-0001-5484-1161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9345991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9345991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Constante F., Santiago G.</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&amp;B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&amp;B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&amp;B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</description><subject>Algorithms</subject><subject>Branch and bound algorithm</subject><subject>Controllers</subject><subject>discrete controllers</subject><subject>Electric power systems</subject><subject>lifted nonlinear cuts</subject><subject>Linear matrix inequalities</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>Mixed integer</subject><subject>optimal reactive power dispatch</subject><subject>Power dispatch</subject><subject>Power generation dispatch</subject><subject>Reactive power</subject><subject>Relaxation methods</subject><subject>Semidefinite programming</subject><subject>semidefinite relaxation</subject><subject>Steady-state</subject><subject>Transformers</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pxix0tibqWsEhKoUPUYucm4NUrjYLssNx4dlyJOo9HMN7_mQ-iEkiGlRJ2_PM0mz8Oc5HTIiJCSFTtoQIUoMyILtYsGpCxFVipB9tFBCK-EEJkGA_T92Ee70i2egK6jfQf85D7A4ysbeh3rJZ7ZuNx0tYcIeOy66F3bgg94Gmy3wBpfet3Vy0x3TXbp1l2DR-3C-YStLvAIP8PKNmBsZxM-gVZ_6mhdh0d9752ul0doz-g2wPFfPUTTm-uX8V328Hh7Px49ZHWuRMygJCUnBgo5h5oLYJSWJVVcyEKmt4EzqorGGMWNZGSuqJKccEHBGKMb1rBDdLa9m2Lf1hBi9erWvkuRVS5kyuA5k2kr327V3oXgwVS9T3r8V0VJtTFd_ZquNqarP9MJOt1CFgD-AcW4UIqyH5gOev8</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Constante F., Santiago G.</creator><creator>Lopez, Juan Camilo</creator><creator>Rider, Marcos J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid></search><sort><creationdate>202109</creationdate><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><author>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Branch and bound algorithm</topic><topic>Controllers</topic><topic>discrete controllers</topic><topic>Electric power systems</topic><topic>lifted nonlinear cuts</topic><topic>Linear matrix inequalities</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>Mixed integer</topic><topic>optimal reactive power dispatch</topic><topic>Power dispatch</topic><topic>Power generation dispatch</topic><topic>Reactive power</topic><topic>Relaxation methods</topic><topic>Semidefinite programming</topic><topic>semidefinite relaxation</topic><topic>Steady-state</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constante F., Santiago G.</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Constante F., Santiago G.</au><au>Lopez, Juan Camilo</au><au>Rider, Marcos J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-09</date><risdate>2021</risdate><volume>36</volume><issue>5</issue><spage>4539</spage><epage>4550</epage><pages>4539-4550</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&amp;B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&amp;B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&amp;B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3056637</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4539-4550
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2021_3056637
source IEEE Electronic Library (IEL)
subjects Algorithms
Branch and bound algorithm
Controllers
discrete controllers
Electric power systems
lifted nonlinear cuts
Linear matrix inequalities
Matrices (mathematics)
Matrix decomposition
Mixed integer
optimal reactive power dispatch
Power dispatch
Power generation dispatch
Reactive power
Relaxation methods
Semidefinite programming
semidefinite relaxation
Steady-state
Transformers
title Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Reactive%20Power%20Dispatch%20With%20Discrete%20Controllers%20Using%20a%20Branch-and-Bound%20Algorithm:%20A%20Semidefinite%20Relaxation%20Approach&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Constante%20F.,%20Santiago%20G.&rft.date=2021-09&rft.volume=36&rft.issue=5&rft.spage=4539&rft.epage=4550&rft.pages=4539-4550&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3056637&rft_dat=%3Cproquest_RIE%3E2562954236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562954236&rft_id=info:pmid/&rft_ieee_id=9345991&rfr_iscdi=true