Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach
In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-09, Vol.36 (5), p.4539-4550 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4550 |
---|---|
container_issue | 5 |
container_start_page | 4539 |
container_title | IEEE transactions on power systems |
container_volume | 36 |
creator | Constante F., Santiago G. Lopez, Juan Camilo Rider, Marcos J. |
description | In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps. |
doi_str_mv | 10.1109/TPWRS.2021.3056637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2021_3056637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9345991</ieee_id><sourcerecordid>2562954236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pxix0tibqWsEhKoUPUYucm4NUrjYLssNx4dlyJOo9HMN7_mQ-iEkiGlRJ2_PM0mz8Oc5HTIiJCSFTtoQIUoMyILtYsGpCxFVipB9tFBCK-EEJkGA_T92Ee70i2egK6jfQf85D7A4ysbeh3rJZ7ZuNx0tYcIeOy66F3bgg94Gmy3wBpfet3Vy0x3TXbp1l2DR-3C-YStLvAIP8PKNmBsZxM-gVZ_6mhdh0d9752ul0doz-g2wPFfPUTTm-uX8V328Hh7Px49ZHWuRMygJCUnBgo5h5oLYJSWJVVcyEKmt4EzqorGGMWNZGSuqJKccEHBGKMb1rBDdLa9m2Lf1hBi9erWvkuRVS5kyuA5k2kr327V3oXgwVS9T3r8V0VJtTFd_ZquNqarP9MJOt1CFgD-AcW4UIqyH5gOev8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562954236</pqid></control><display><type>article</type><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</creator><creatorcontrib>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</creatorcontrib><description>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3056637</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Branch and bound algorithm ; Controllers ; discrete controllers ; Electric power systems ; lifted nonlinear cuts ; Linear matrix inequalities ; Matrices (mathematics) ; Matrix decomposition ; Mixed integer ; optimal reactive power dispatch ; Power dispatch ; Power generation dispatch ; Reactive power ; Relaxation methods ; Semidefinite programming ; semidefinite relaxation ; Steady-state ; Transformers</subject><ispartof>IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4539-4550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</citedby><cites>FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</cites><orcidid>0000-0001-5646-8612 ; 0000-0001-5484-1161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9345991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9345991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Constante F., Santiago G.</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</description><subject>Algorithms</subject><subject>Branch and bound algorithm</subject><subject>Controllers</subject><subject>discrete controllers</subject><subject>Electric power systems</subject><subject>lifted nonlinear cuts</subject><subject>Linear matrix inequalities</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>Mixed integer</subject><subject>optimal reactive power dispatch</subject><subject>Power dispatch</subject><subject>Power generation dispatch</subject><subject>Reactive power</subject><subject>Relaxation methods</subject><subject>Semidefinite programming</subject><subject>semidefinite relaxation</subject><subject>Steady-state</subject><subject>Transformers</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pxix0tibqWsEhKoUPUYucm4NUrjYLssNx4dlyJOo9HMN7_mQ-iEkiGlRJ2_PM0mz8Oc5HTIiJCSFTtoQIUoMyILtYsGpCxFVipB9tFBCK-EEJkGA_T92Ee70i2egK6jfQf85D7A4ysbeh3rJZ7ZuNx0tYcIeOy66F3bgg94Gmy3wBpfet3Vy0x3TXbp1l2DR-3C-YStLvAIP8PKNmBsZxM-gVZ_6mhdh0d9752ul0doz-g2wPFfPUTTm-uX8V328Hh7Px49ZHWuRMygJCUnBgo5h5oLYJSWJVVcyEKmt4EzqorGGMWNZGSuqJKccEHBGKMb1rBDdLa9m2Lf1hBi9erWvkuRVS5kyuA5k2kr327V3oXgwVS9T3r8V0VJtTFd_ZquNqarP9MJOt1CFgD-AcW4UIqyH5gOev8</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Constante F., Santiago G.</creator><creator>Lopez, Juan Camilo</creator><creator>Rider, Marcos J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid></search><sort><creationdate>202109</creationdate><title>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</title><author>Constante F., Santiago G. ; Lopez, Juan Camilo ; Rider, Marcos J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e80840fe76bec45e311881945676202e43197dff94f630b919640451efffad3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Branch and bound algorithm</topic><topic>Controllers</topic><topic>discrete controllers</topic><topic>Electric power systems</topic><topic>lifted nonlinear cuts</topic><topic>Linear matrix inequalities</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>Mixed integer</topic><topic>optimal reactive power dispatch</topic><topic>Power dispatch</topic><topic>Power generation dispatch</topic><topic>Reactive power</topic><topic>Relaxation methods</topic><topic>Semidefinite programming</topic><topic>semidefinite relaxation</topic><topic>Steady-state</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constante F., Santiago G.</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Constante F., Santiago G.</au><au>Lopez, Juan Camilo</au><au>Rider, Marcos J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-09</date><risdate>2021</risdate><volume>36</volume><issue>5</issue><spage>4539</spage><epage>4550</epage><pages>4539-4550</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this paper, a methodology to solve the optimal reactive power dispatch (ORPD) in electric power systems (EPS), considering discrete controllers, is proposed. Discrete controllers, such as the tap position of on-load tap changing (OLTC) transformers and switchable reactive shunt compensation, are optimized by the proposed method. A semidefinite relaxation (SDR) of the ORPD problem and a branch-and-bound (B&B) algorithm have been fully deployed. A new formulation is presented for the OLTC transformers to obtain a connected structure of the semidefinite programming (SDP) matrices. The customized B&B algorithm deals with the discrete nature of the binary control variables. Moreover, in order to enhance the convexification, valid inequalities called lifted nonlinear cuts (NLC) are implemented in the SDR. Additionally, a chordal decomposition technique is used to improve the computational performance. Finally, the B&B algorithm is used to solve the mixed-integer semidefinite programming problem. Several benchmarks have been used to show the accuracy and scalability of the proposed method, and convergence analysis shows that near-global optimal solutions are generated with small relaxation gaps.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3056637</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4539-4550 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2021_3056637 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Branch and bound algorithm Controllers discrete controllers Electric power systems lifted nonlinear cuts Linear matrix inequalities Matrices (mathematics) Matrix decomposition Mixed integer optimal reactive power dispatch Power dispatch Power generation dispatch Reactive power Relaxation methods Semidefinite programming semidefinite relaxation Steady-state Transformers |
title | Optimal Reactive Power Dispatch With Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Reactive%20Power%20Dispatch%20With%20Discrete%20Controllers%20Using%20a%20Branch-and-Bound%20Algorithm:%20A%20Semidefinite%20Relaxation%20Approach&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Constante%20F.,%20Santiago%20G.&rft.date=2021-09&rft.volume=36&rft.issue=5&rft.spage=4539&rft.epage=4550&rft.pages=4539-4550&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3056637&rft_dat=%3Cproquest_RIE%3E2562954236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562954236&rft_id=info:pmid/&rft_ieee_id=9345991&rfr_iscdi=true |