Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters

Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-03, Vol.35 (2), p.1254-1263
Hauptverfasser: Buzau, Madalina-Mihaela, Tejedor-Aguilera, Javier, Cruz-Romero, Pedro, Gomez-Exposito, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 2
container_start_page 1254
container_title IEEE transactions on power systems
container_volume 35
creator Buzau, Madalina-Mihaela
Tejedor-Aguilera, Javier
Cruz-Romero, Pedro
Gomez-Exposito, Antonio
description Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.
doi_str_mv 10.1109/TPWRS.2019.2943115
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2019_2943115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846082</ieee_id><sourcerecordid>2359904718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</originalsourceid><addsrcrecordid>eNo9kEFPAyEUhInRxFr9A3oh8bz1wcIWjqZWa1KrsTWeDAGWjdS6VNjG9N-LtvE0h5nvvckgdE5gQAjIq8XT6_N8QIHIAZWsJIQfoB7hXBRQDeUh6oEQvBCSwzE6SWkJAFU2euhtsjXR1_jGuTWeuU3Uqyzdd4gfCTchZqNztvOhxaHBs9AWC2ffW29zbhpScgn7Fo9XORO99d0Wzz917PBDxmI6RUeNXiV3ttc-erkdL0aTYvp4dz-6nha2ZKwrbFPWdlhzQ4hsclOmrdFgZCmEFo5qA8TZugYjbMWooUwzYNbUnDkN0JCyjy53d9cxfG1c6tQybGKbXypacimBDYnIKbpL2ZibR9eodfS57VYRUL8zqr8Z1e-Maj9jhi52kHfO_QO5YwWClj_SGG-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904718</pqid></control><display><type>article</type><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><source>IEEE Electronic Library (IEL)</source><creator>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</creator><creatorcontrib>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</creatorcontrib><description>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2943115</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Artificial neural networks ; Data models ; Deep learning ; Electric utilities ; Electricity ; Electricity meters ; Energy consumption ; History ; hybrid neural networks ; Inspection ; Machine learning ; Multilayers ; Neural networks ; non-technical losses (NTL) ; smart meter data ; Smart meters ; Supervised learning</subject><ispartof>IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1254-1263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</citedby><cites>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</cites><orcidid>0000-0003-2002-757X ; 0000-0003-1720-6876 ; 0000-0002-6911-8475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8846082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buzau, Madalina-Mihaela</creatorcontrib><creatorcontrib>Tejedor-Aguilera, Javier</creatorcontrib><creatorcontrib>Cruz-Romero, Pedro</creatorcontrib><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Electricity meters</subject><subject>Energy consumption</subject><subject>History</subject><subject>hybrid neural networks</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>non-technical losses (NTL)</subject><subject>smart meter data</subject><subject>Smart meters</subject><subject>Supervised learning</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAyEUhInRxFr9A3oh8bz1wcIWjqZWa1KrsTWeDAGWjdS6VNjG9N-LtvE0h5nvvckgdE5gQAjIq8XT6_N8QIHIAZWsJIQfoB7hXBRQDeUh6oEQvBCSwzE6SWkJAFU2euhtsjXR1_jGuTWeuU3Uqyzdd4gfCTchZqNztvOhxaHBs9AWC2ffW29zbhpScgn7Fo9XORO99d0Wzz917PBDxmI6RUeNXiV3ttc-erkdL0aTYvp4dz-6nha2ZKwrbFPWdlhzQ4hsclOmrdFgZCmEFo5qA8TZugYjbMWooUwzYNbUnDkN0JCyjy53d9cxfG1c6tQybGKbXypacimBDYnIKbpL2ZibR9eodfS57VYRUL8zqr8Z1e-Maj9jhi52kHfO_QO5YwWClj_SGG-h</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Buzau, Madalina-Mihaela</creator><creator>Tejedor-Aguilera, Javier</creator><creator>Cruz-Romero, Pedro</creator><creator>Gomez-Exposito, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2002-757X</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-6911-8475</orcidid></search><sort><creationdate>202003</creationdate><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><author>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Electricity meters</topic><topic>Energy consumption</topic><topic>History</topic><topic>hybrid neural networks</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>non-technical losses (NTL)</topic><topic>smart meter data</topic><topic>Smart meters</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzau, Madalina-Mihaela</creatorcontrib><creatorcontrib>Tejedor-Aguilera, Javier</creatorcontrib><creatorcontrib>Cruz-Romero, Pedro</creatorcontrib><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buzau, Madalina-Mihaela</au><au>Tejedor-Aguilera, Javier</au><au>Cruz-Romero, Pedro</au><au>Gomez-Exposito, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-03</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>1254</spage><epage>1263</epage><pages>1254-1263</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2943115</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2002-757X</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-6911-8475</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1254-1263
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2019_2943115
source IEEE Electronic Library (IEL)
subjects Anomalies
Artificial neural networks
Data models
Deep learning
Electric utilities
Electricity
Electricity meters
Energy consumption
History
hybrid neural networks
Inspection
Machine learning
Multilayers
Neural networks
non-technical losses (NTL)
smart meter data
Smart meters
Supervised learning
title Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Deep%20Neural%20Networks%20for%20Detection%20of%20Non-Technical%20Losses%20in%20Electricity%20Smart%20Meters&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Buzau,%20Madalina-Mihaela&rft.date=2020-03&rft.volume=35&rft.issue=2&rft.spage=1254&rft.epage=1263&rft.pages=1254-1263&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2943115&rft_dat=%3Cproquest_RIE%3E2359904718%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904718&rft_id=info:pmid/&rft_ieee_id=8846082&rfr_iscdi=true