Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters
Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw dat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2020-03, Vol.35 (2), p.1254-1263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 2 |
container_start_page | 1254 |
container_title | IEEE transactions on power systems |
container_volume | 35 |
creator | Buzau, Madalina-Mihaela Tejedor-Aguilera, Javier Cruz-Romero, Pedro Gomez-Exposito, Antonio |
description | Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain. |
doi_str_mv | 10.1109/TPWRS.2019.2943115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2019_2943115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846082</ieee_id><sourcerecordid>2359904718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</originalsourceid><addsrcrecordid>eNo9kEFPAyEUhInRxFr9A3oh8bz1wcIWjqZWa1KrsTWeDAGWjdS6VNjG9N-LtvE0h5nvvckgdE5gQAjIq8XT6_N8QIHIAZWsJIQfoB7hXBRQDeUh6oEQvBCSwzE6SWkJAFU2euhtsjXR1_jGuTWeuU3Uqyzdd4gfCTchZqNztvOhxaHBs9AWC2ffW29zbhpScgn7Fo9XORO99d0Wzz917PBDxmI6RUeNXiV3ttc-erkdL0aTYvp4dz-6nha2ZKwrbFPWdlhzQ4hsclOmrdFgZCmEFo5qA8TZugYjbMWooUwzYNbUnDkN0JCyjy53d9cxfG1c6tQybGKbXypacimBDYnIKbpL2ZibR9eodfS57VYRUL8zqr8Z1e-Maj9jhi52kHfO_QO5YwWClj_SGG-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904718</pqid></control><display><type>article</type><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><source>IEEE Electronic Library (IEL)</source><creator>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</creator><creatorcontrib>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</creatorcontrib><description>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2943115</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Artificial neural networks ; Data models ; Deep learning ; Electric utilities ; Electricity ; Electricity meters ; Energy consumption ; History ; hybrid neural networks ; Inspection ; Machine learning ; Multilayers ; Neural networks ; non-technical losses (NTL) ; smart meter data ; Smart meters ; Supervised learning</subject><ispartof>IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1254-1263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</citedby><cites>FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</cites><orcidid>0000-0003-2002-757X ; 0000-0003-1720-6876 ; 0000-0002-6911-8475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8846082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buzau, Madalina-Mihaela</creatorcontrib><creatorcontrib>Tejedor-Aguilera, Javier</creatorcontrib><creatorcontrib>Cruz-Romero, Pedro</creatorcontrib><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Electricity meters</subject><subject>Energy consumption</subject><subject>History</subject><subject>hybrid neural networks</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>non-technical losses (NTL)</subject><subject>smart meter data</subject><subject>Smart meters</subject><subject>Supervised learning</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAyEUhInRxFr9A3oh8bz1wcIWjqZWa1KrsTWeDAGWjdS6VNjG9N-LtvE0h5nvvckgdE5gQAjIq8XT6_N8QIHIAZWsJIQfoB7hXBRQDeUh6oEQvBCSwzE6SWkJAFU2euhtsjXR1_jGuTWeuU3Uqyzdd4gfCTchZqNztvOhxaHBs9AWC2ffW29zbhpScgn7Fo9XORO99d0Wzz917PBDxmI6RUeNXiV3ttc-erkdL0aTYvp4dz-6nha2ZKwrbFPWdlhzQ4hsclOmrdFgZCmEFo5qA8TZugYjbMWooUwzYNbUnDkN0JCyjy53d9cxfG1c6tQybGKbXypacimBDYnIKbpL2ZibR9eodfS57VYRUL8zqr8Z1e-Maj9jhi52kHfO_QO5YwWClj_SGG-h</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Buzau, Madalina-Mihaela</creator><creator>Tejedor-Aguilera, Javier</creator><creator>Cruz-Romero, Pedro</creator><creator>Gomez-Exposito, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2002-757X</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-6911-8475</orcidid></search><sort><creationdate>202003</creationdate><title>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</title><author>Buzau, Madalina-Mihaela ; Tejedor-Aguilera, Javier ; Cruz-Romero, Pedro ; Gomez-Exposito, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-cf3dc7d5b119f0884acba0b9388a8e2ab01ecdd0b8c642b24a404cbd54ea00f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Electricity meters</topic><topic>Energy consumption</topic><topic>History</topic><topic>hybrid neural networks</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>non-technical losses (NTL)</topic><topic>smart meter data</topic><topic>Smart meters</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzau, Madalina-Mihaela</creatorcontrib><creatorcontrib>Tejedor-Aguilera, Javier</creatorcontrib><creatorcontrib>Cruz-Romero, Pedro</creatorcontrib><creatorcontrib>Gomez-Exposito, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buzau, Madalina-Mihaela</au><au>Tejedor-Aguilera, Javier</au><au>Cruz-Romero, Pedro</au><au>Gomez-Exposito, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-03</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>1254</spage><epage>1263</epage><pages>1254-1263</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Non-technical losses (NTL) in electricity utilities are responsible for major revenue losses. In this paper, we propose a novel end-to-end solution to self-learn the features for detecting anomalies and frauds in smart meters using a hybrid deep neural network. The network is fed with simple raw data, removing the need of handcrafted feature engineering. The proposed architecture consists of a long short-term memory network and a multi-layer perceptrons network. The first network analyses the raw daily energy consumption history whilst the second one integrates non-sequential data such as its contracted power or geographical information. The results show that the hybrid neural network significantly outperforms state-of-the-art classifiers as well as previous deep learning models used in NTL detection. The model has been trained and tested with real smart meter data of Endesa, the largest electricity utility in Spain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2943115</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2002-757X</orcidid><orcidid>https://orcid.org/0000-0003-1720-6876</orcidid><orcidid>https://orcid.org/0000-0002-6911-8475</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2020-03, Vol.35 (2), p.1254-1263 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2019_2943115 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Artificial neural networks Data models Deep learning Electric utilities Electricity Electricity meters Energy consumption History hybrid neural networks Inspection Machine learning Multilayers Neural networks non-technical losses (NTL) smart meter data Smart meters Supervised learning |
title | Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Deep%20Neural%20Networks%20for%20Detection%20of%20Non-Technical%20Losses%20in%20Electricity%20Smart%20Meters&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Buzau,%20Madalina-Mihaela&rft.date=2020-03&rft.volume=35&rft.issue=2&rft.spage=1254&rft.epage=1263&rft.pages=1254-1263&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2943115&rft_dat=%3Cproquest_RIE%3E2359904718%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904718&rft_id=info:pmid/&rft_ieee_id=8846082&rfr_iscdi=true |