Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks

Due to the variability and partial unpredictability of renewable energy sources (RES), generation reserve sizing is key for managing operational risks and enhancing grid reliability. Most existing approaches for reserve sizing estimate the forecasting error for RES using either simple point forecast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-05, Vol.34 (3), p.2281-2291
Hauptverfasser: Fahiman, Fateme, Disano, Steven, Erfani, Sarah Monazam, Mancarella, Pierluigi, Leckie, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2291
container_issue 3
container_start_page 2281
container_title IEEE transactions on power systems
container_volume 34
creator Fahiman, Fateme
Disano, Steven
Erfani, Sarah Monazam
Mancarella, Pierluigi
Leckie, Christopher
description Due to the variability and partial unpredictability of renewable energy sources (RES), generation reserve sizing is key for managing operational risks and enhancing grid reliability. Most existing approaches for reserve sizing estimate the forecasting error for RES using either simple point forecasts, or probabilistic forecasts that assume a predefined parametric model of the underlying distribution, such as a Gaussian distribution. However, these approaches are unable to accurately model the probability of critical events that occur in the tails of the distributions, which is vital for operational risk management. Further, they do not account for multiple dynamic factors that may impact operational risk. In this paper, we introduce a data-driven dynamic probabilistic reserve sizing method based on the artificial intelligence technique of dynamic Bayesian belief networks. The method considers the actual underlying distribution of forecasting errors from the availability of conventional generators (forecasting errors of their available generation capacity), demand, RES, and prevailing conditions such as weather and market prices. In addition, we introduce a new dynamic metric for calculating the reliability level of the power grid in order to provide a real-time stochastic decision support tool for power system operators. The proposed method is demonstrated using seven years of real historical data with a granularity of 30 min from the power system in Australia, and has been implemented and is currently used by the Australian system operator.
doi_str_mv 10.1109/TPWRS.2018.2884711
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2018_2884711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8556483</ieee_id><sourcerecordid>2214432539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-482d7da3b20b4ef10254e276447b3516e43ef0ab54cab49386377b101414737d3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_QC8Bz1vzuckebesXFC1tRfASkt1ZSW13a7Kt1F_v1oqehpd53hl4EDqnpEcpya5m45fJtMcI1T2mtVCUHqAOlVInJFXZIeoQrWWiM0mO0UmMc0JI2i466HVoG5sMg99AhYfbyi59jsehdtb5hY9NmyYQIWwAT_2Xr95w30YocP1P9-0WorcV7sPCQ4kfofmsw3s8RUelXUQ4-51d9Hx7MxvcJ6Onu4fB9SjJWSabRGhWqMJyx4gTUFLCpACmUiGU45KmIDiUxDopcutExnXKlXKUUEGF4qrgXXS5v7sK9ccaYmPm9TpU7UvDGBWCM8mzlmJ7Kg91jAFKswp-acPWUGJ2Ds2PQ7NzaH4dtqWLfckDwF9BS5kKzfk3NoRsmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214432539</pqid></control><display><type>article</type><title>Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Fahiman, Fateme ; Disano, Steven ; Erfani, Sarah Monazam ; Mancarella, Pierluigi ; Leckie, Christopher</creator><creatorcontrib>Fahiman, Fateme ; Disano, Steven ; Erfani, Sarah Monazam ; Mancarella, Pierluigi ; Leckie, Christopher</creatorcontrib><description>Due to the variability and partial unpredictability of renewable energy sources (RES), generation reserve sizing is key for managing operational risks and enhancing grid reliability. Most existing approaches for reserve sizing estimate the forecasting error for RES using either simple point forecasts, or probabilistic forecasts that assume a predefined parametric model of the underlying distribution, such as a Gaussian distribution. However, these approaches are unable to accurately model the probability of critical events that occur in the tails of the distributions, which is vital for operational risk management. Further, they do not account for multiple dynamic factors that may impact operational risk. In this paper, we introduce a data-driven dynamic probabilistic reserve sizing method based on the artificial intelligence technique of dynamic Bayesian belief networks. The method considers the actual underlying distribution of forecasting errors from the availability of conventional generators (forecasting errors of their available generation capacity), demand, RES, and prevailing conditions such as weather and market prices. In addition, we introduce a new dynamic metric for calculating the reliability level of the power grid in order to provide a real-time stochastic decision support tool for power system operators. The proposed method is demonstrated using seven years of real historical data with a granularity of 30 min from the power system in Australia, and has been implemented and is currently used by the Australian system operator.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2884711</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Bayes methods ; Bayesian analysis ; Belief networks ; data-driven model ; Dynamic Bayesian belief networks ; Economic forecasting ; Energy management ; Gaussian distribution ; Mathematical analysis ; Mathematical models ; Normal distribution ; Power system dynamics ; Power system reliability ; Pricing ; probabilistic forecasting ; Probabilistic logic ; Probabilistic methods ; probabilistic reserve sizing ; Probability theory ; Reliability ; Renewable energy sources ; Risk management ; Sizing ; Statistical analysis ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2019-05, Vol.34 (3), p.2281-2291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-482d7da3b20b4ef10254e276447b3516e43ef0ab54cab49386377b101414737d3</citedby><cites>FETCH-LOGICAL-c295t-482d7da3b20b4ef10254e276447b3516e43ef0ab54cab49386377b101414737d3</cites><orcidid>0000-0002-3004-486X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8556483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8556483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fahiman, Fateme</creatorcontrib><creatorcontrib>Disano, Steven</creatorcontrib><creatorcontrib>Erfani, Sarah Monazam</creatorcontrib><creatorcontrib>Mancarella, Pierluigi</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><title>Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Due to the variability and partial unpredictability of renewable energy sources (RES), generation reserve sizing is key for managing operational risks and enhancing grid reliability. Most existing approaches for reserve sizing estimate the forecasting error for RES using either simple point forecasts, or probabilistic forecasts that assume a predefined parametric model of the underlying distribution, such as a Gaussian distribution. However, these approaches are unable to accurately model the probability of critical events that occur in the tails of the distributions, which is vital for operational risk management. Further, they do not account for multiple dynamic factors that may impact operational risk. In this paper, we introduce a data-driven dynamic probabilistic reserve sizing method based on the artificial intelligence technique of dynamic Bayesian belief networks. The method considers the actual underlying distribution of forecasting errors from the availability of conventional generators (forecasting errors of their available generation capacity), demand, RES, and prevailing conditions such as weather and market prices. In addition, we introduce a new dynamic metric for calculating the reliability level of the power grid in order to provide a real-time stochastic decision support tool for power system operators. The proposed method is demonstrated using seven years of real historical data with a granularity of 30 min from the power system in Australia, and has been implemented and is currently used by the Australian system operator.</description><subject>Artificial intelligence</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Belief networks</subject><subject>data-driven model</subject><subject>Dynamic Bayesian belief networks</subject><subject>Economic forecasting</subject><subject>Energy management</subject><subject>Gaussian distribution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Normal distribution</subject><subject>Power system dynamics</subject><subject>Power system reliability</subject><subject>Pricing</subject><subject>probabilistic forecasting</subject><subject>Probabilistic logic</subject><subject>Probabilistic methods</subject><subject>probabilistic reserve sizing</subject><subject>Probability theory</subject><subject>Reliability</subject><subject>Renewable energy sources</subject><subject>Risk management</subject><subject>Sizing</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1LAzEQhoMoWKt_QC8Bz1vzuckebesXFC1tRfASkt1ZSW13a7Kt1F_v1oqehpd53hl4EDqnpEcpya5m45fJtMcI1T2mtVCUHqAOlVInJFXZIeoQrWWiM0mO0UmMc0JI2i466HVoG5sMg99AhYfbyi59jsehdtb5hY9NmyYQIWwAT_2Xr95w30YocP1P9-0WorcV7sPCQ4kfofmsw3s8RUelXUQ4-51d9Hx7MxvcJ6Onu4fB9SjJWSabRGhWqMJyx4gTUFLCpACmUiGU45KmIDiUxDopcutExnXKlXKUUEGF4qrgXXS5v7sK9ccaYmPm9TpU7UvDGBWCM8mzlmJ7Kg91jAFKswp-acPWUGJ2Ds2PQ7NzaH4dtqWLfckDwF9BS5kKzfk3NoRsmQ</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Fahiman, Fateme</creator><creator>Disano, Steven</creator><creator>Erfani, Sarah Monazam</creator><creator>Mancarella, Pierluigi</creator><creator>Leckie, Christopher</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3004-486X</orcidid></search><sort><creationdate>201905</creationdate><title>Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks</title><author>Fahiman, Fateme ; Disano, Steven ; Erfani, Sarah Monazam ; Mancarella, Pierluigi ; Leckie, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-482d7da3b20b4ef10254e276447b3516e43ef0ab54cab49386377b101414737d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Belief networks</topic><topic>data-driven model</topic><topic>Dynamic Bayesian belief networks</topic><topic>Economic forecasting</topic><topic>Energy management</topic><topic>Gaussian distribution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Normal distribution</topic><topic>Power system dynamics</topic><topic>Power system reliability</topic><topic>Pricing</topic><topic>probabilistic forecasting</topic><topic>Probabilistic logic</topic><topic>Probabilistic methods</topic><topic>probabilistic reserve sizing</topic><topic>Probability theory</topic><topic>Reliability</topic><topic>Renewable energy sources</topic><topic>Risk management</topic><topic>Sizing</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahiman, Fateme</creatorcontrib><creatorcontrib>Disano, Steven</creatorcontrib><creatorcontrib>Erfani, Sarah Monazam</creatorcontrib><creatorcontrib>Mancarella, Pierluigi</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fahiman, Fateme</au><au>Disano, Steven</au><au>Erfani, Sarah Monazam</au><au>Mancarella, Pierluigi</au><au>Leckie, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-05</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>2281</spage><epage>2291</epage><pages>2281-2291</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Due to the variability and partial unpredictability of renewable energy sources (RES), generation reserve sizing is key for managing operational risks and enhancing grid reliability. Most existing approaches for reserve sizing estimate the forecasting error for RES using either simple point forecasts, or probabilistic forecasts that assume a predefined parametric model of the underlying distribution, such as a Gaussian distribution. However, these approaches are unable to accurately model the probability of critical events that occur in the tails of the distributions, which is vital for operational risk management. Further, they do not account for multiple dynamic factors that may impact operational risk. In this paper, we introduce a data-driven dynamic probabilistic reserve sizing method based on the artificial intelligence technique of dynamic Bayesian belief networks. The method considers the actual underlying distribution of forecasting errors from the availability of conventional generators (forecasting errors of their available generation capacity), demand, RES, and prevailing conditions such as weather and market prices. In addition, we introduce a new dynamic metric for calculating the reliability level of the power grid in order to provide a real-time stochastic decision support tool for power system operators. The proposed method is demonstrated using seven years of real historical data with a granularity of 30 min from the power system in Australia, and has been implemented and is currently used by the Australian system operator.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2884711</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3004-486X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-05, Vol.34 (3), p.2281-2291
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2018_2884711
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Bayes methods
Bayesian analysis
Belief networks
data-driven model
Dynamic Bayesian belief networks
Economic forecasting
Energy management
Gaussian distribution
Mathematical analysis
Mathematical models
Normal distribution
Power system dynamics
Power system reliability
Pricing
probabilistic forecasting
Probabilistic logic
Probabilistic methods
probabilistic reserve sizing
Probability theory
Reliability
Renewable energy sources
Risk management
Sizing
Statistical analysis
Uncertainty
title Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Dynamic%20Probabilistic%20Reserve%20Sizing%20Based%20on%20Dynamic%20Bayesian%20Belief%20Networks&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Fahiman,%20Fateme&rft.date=2019-05&rft.volume=34&rft.issue=3&rft.spage=2281&rft.epage=2291&rft.pages=2281-2291&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2884711&rft_dat=%3Cproquest_RIE%3E2214432539%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214432539&rft_id=info:pmid/&rft_ieee_id=8556483&rfr_iscdi=true