Two-Stage Stochastic Programming Model for Market Clearing With Contingencies

Planning for contingencies typically results in the use of more expensive facilities before disruptions. It leads to different prices and energy availability at various network locations depending on how the contingency analysis is performed. In this paper we present a two-stage stochastic programmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2009-08, Vol.24 (3), p.1266-1278
Hauptverfasser: Saric, A.T., Murphy, F.H., Soyster, A.L., Stankovic, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1278
container_issue 3
container_start_page 1266
container_title IEEE transactions on power systems
container_volume 24
creator Saric, A.T.
Murphy, F.H.
Soyster, A.L.
Stankovic, A.M.
description Planning for contingencies typically results in the use of more expensive facilities before disruptions. It leads to different prices and energy availability at various network locations depending on how the contingency analysis is performed. In this paper we present a two-stage stochastic programming model for incorporating contingencies. The model is computationally demanding, and made tractable by using an interior-point log-barrier method coupled with Benders decomposition. The second-stage optimal recourse function (RF) defines the most economically efficient actions in the post-contingency state for returning the system back to normal operating conditions. The approach is illustrated with for two examples: small (with 8 buses/11 branches) and IEEE medium-scale (with 300 buses/411 branches).
doi_str_mv 10.1109/TPWRS.2009.2023267
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2009_2023267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5161353</ieee_id><sourcerecordid>36364512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3e81e86e1a7d2cd75de8b8637a10e6946d9c4dd45d25b6e219bbd71d3baea85e3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFb_gF6CB_GSuh_Zr6MEv6DFYis9LpvstE1Ns3U3Rfz3plY8ePAywzDPOzA8CJ0TPCAE65vpePYyGVCMdVcoo0IeoB7hXKVYSH2IelgpnirN8TE6iXGFMRbdoodG0w-fTlq7gGTS-nJpY1uVyTj4RbDrddUskpF3UCdzH5KRDW_QJnkNNuw2s6pdJrlv2m6ApqwgnqKjua0jnP30Pnq9v5vmj-nw-eEpvx2mJeOqTRkoAkoAsdLR0knuQBVKMGkJBqEz4XSZOZdxR3khgBJdFE4SxwoLVnFgfXS1v7sJ_n0LsTXrKpZQ17YBv42GCSYyTmgHXv8LEiEJlSSTokMv_6Arvw1N94ZRXAnNlWYdRPdQGXyMAeZmE6q1DZ-GYLMzYb5NmJ0J82OiC13sQxUA_AY4EYRxxr4A3CmEzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858695893</pqid></control><display><type>article</type><title>Two-Stage Stochastic Programming Model for Market Clearing With Contingencies</title><source>IEEE Electronic Library (IEL)</source><creator>Saric, A.T. ; Murphy, F.H. ; Soyster, A.L. ; Stankovic, A.M.</creator><creatorcontrib>Saric, A.T. ; Murphy, F.H. ; Soyster, A.L. ; Stankovic, A.M.</creatorcontrib><description>Planning for contingencies typically results in the use of more expensive facilities before disruptions. It leads to different prices and energy availability at various network locations depending on how the contingency analysis is performed. In this paper we present a two-stage stochastic programming model for incorporating contingencies. The model is computationally demanding, and made tractable by using an interior-point log-barrier method coupled with Benders decomposition. The second-stage optimal recourse function (RF) defines the most economically efficient actions in the post-contingency state for returning the system back to normal operating conditions. The approach is illustrated with for two examples: small (with 8 buses/11 branches) and IEEE medium-scale (with 300 buses/411 branches).</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2009.2023267</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Availability ; Buses (vehicles) ; Computational modeling ; Contingency ; Linear matrix inequalities ; Locational marginal prices (LMPs) ; Mathematical analysis ; Mathematical models ; Optimization ; optimization methods ; Performance analysis ; Power generation economics ; Power system economics ; Power system modeling ; power system security ; Programming ; Radio frequency ; stochastic approximation ; Stochastic processes ; Stochasticity ; Transmission line matrix methods ; uncertainty</subject><ispartof>IEEE transactions on power systems, 2009-08, Vol.24 (3), p.1266-1278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3e81e86e1a7d2cd75de8b8637a10e6946d9c4dd45d25b6e219bbd71d3baea85e3</citedby><cites>FETCH-LOGICAL-c358t-3e81e86e1a7d2cd75de8b8637a10e6946d9c4dd45d25b6e219bbd71d3baea85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5161353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5161353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saric, A.T.</creatorcontrib><creatorcontrib>Murphy, F.H.</creatorcontrib><creatorcontrib>Soyster, A.L.</creatorcontrib><creatorcontrib>Stankovic, A.M.</creatorcontrib><title>Two-Stage Stochastic Programming Model for Market Clearing With Contingencies</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Planning for contingencies typically results in the use of more expensive facilities before disruptions. It leads to different prices and energy availability at various network locations depending on how the contingency analysis is performed. In this paper we present a two-stage stochastic programming model for incorporating contingencies. The model is computationally demanding, and made tractable by using an interior-point log-barrier method coupled with Benders decomposition. The second-stage optimal recourse function (RF) defines the most economically efficient actions in the post-contingency state for returning the system back to normal operating conditions. The approach is illustrated with for two examples: small (with 8 buses/11 branches) and IEEE medium-scale (with 300 buses/411 branches).</description><subject>Availability</subject><subject>Buses (vehicles)</subject><subject>Computational modeling</subject><subject>Contingency</subject><subject>Linear matrix inequalities</subject><subject>Locational marginal prices (LMPs)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Performance analysis</subject><subject>Power generation economics</subject><subject>Power system economics</subject><subject>Power system modeling</subject><subject>power system security</subject><subject>Programming</subject><subject>Radio frequency</subject><subject>stochastic approximation</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Transmission line matrix methods</subject><subject>uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1Lw0AQhhdRsFb_gF6CB_GSuh_Zr6MEv6DFYis9LpvstE1Ns3U3Rfz3plY8ePAywzDPOzA8CJ0TPCAE65vpePYyGVCMdVcoo0IeoB7hXKVYSH2IelgpnirN8TE6iXGFMRbdoodG0w-fTlq7gGTS-nJpY1uVyTj4RbDrddUskpF3UCdzH5KRDW_QJnkNNuw2s6pdJrlv2m6ApqwgnqKjua0jnP30Pnq9v5vmj-nw-eEpvx2mJeOqTRkoAkoAsdLR0knuQBVKMGkJBqEz4XSZOZdxR3khgBJdFE4SxwoLVnFgfXS1v7sJ_n0LsTXrKpZQ17YBv42GCSYyTmgHXv8LEiEJlSSTokMv_6Arvw1N94ZRXAnNlWYdRPdQGXyMAeZmE6q1DZ-GYLMzYb5NmJ0J82OiC13sQxUA_AY4EYRxxr4A3CmEzA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Saric, A.T.</creator><creator>Murphy, F.H.</creator><creator>Soyster, A.L.</creator><creator>Stankovic, A.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20090801</creationdate><title>Two-Stage Stochastic Programming Model for Market Clearing With Contingencies</title><author>Saric, A.T. ; Murphy, F.H. ; Soyster, A.L. ; Stankovic, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3e81e86e1a7d2cd75de8b8637a10e6946d9c4dd45d25b6e219bbd71d3baea85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Availability</topic><topic>Buses (vehicles)</topic><topic>Computational modeling</topic><topic>Contingency</topic><topic>Linear matrix inequalities</topic><topic>Locational marginal prices (LMPs)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Performance analysis</topic><topic>Power generation economics</topic><topic>Power system economics</topic><topic>Power system modeling</topic><topic>power system security</topic><topic>Programming</topic><topic>Radio frequency</topic><topic>stochastic approximation</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Transmission line matrix methods</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saric, A.T.</creatorcontrib><creatorcontrib>Murphy, F.H.</creatorcontrib><creatorcontrib>Soyster, A.L.</creatorcontrib><creatorcontrib>Stankovic, A.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saric, A.T.</au><au>Murphy, F.H.</au><au>Soyster, A.L.</au><au>Stankovic, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Stage Stochastic Programming Model for Market Clearing With Contingencies</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>24</volume><issue>3</issue><spage>1266</spage><epage>1278</epage><pages>1266-1278</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Planning for contingencies typically results in the use of more expensive facilities before disruptions. It leads to different prices and energy availability at various network locations depending on how the contingency analysis is performed. In this paper we present a two-stage stochastic programming model for incorporating contingencies. The model is computationally demanding, and made tractable by using an interior-point log-barrier method coupled with Benders decomposition. The second-stage optimal recourse function (RF) defines the most economically efficient actions in the post-contingency state for returning the system back to normal operating conditions. The approach is illustrated with for two examples: small (with 8 buses/11 branches) and IEEE medium-scale (with 300 buses/411 branches).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2009.2023267</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2009-08, Vol.24 (3), p.1266-1278
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2009_2023267
source IEEE Electronic Library (IEL)
subjects Availability
Buses (vehicles)
Computational modeling
Contingency
Linear matrix inequalities
Locational marginal prices (LMPs)
Mathematical analysis
Mathematical models
Optimization
optimization methods
Performance analysis
Power generation economics
Power system economics
Power system modeling
power system security
Programming
Radio frequency
stochastic approximation
Stochastic processes
Stochasticity
Transmission line matrix methods
uncertainty
title Two-Stage Stochastic Programming Model for Market Clearing With Contingencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Stage%20Stochastic%20Programming%20Model%20for%20Market%20Clearing%20With%20Contingencies&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Saric,%20A.T.&rft.date=2009-08-01&rft.volume=24&rft.issue=3&rft.spage=1266&rft.epage=1278&rft.pages=1266-1278&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2009.2023267&rft_dat=%3Cproquest_RIE%3E36364512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858695893&rft_id=info:pmid/&rft_ieee_id=5161353&rfr_iscdi=true