Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method

This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2006-11, Vol.21 (4), p.1883-1893
Hauptverfasser: Verbic, G., Canizares, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1893
container_issue 4
container_start_page 1883
container_title IEEE transactions on power systems
container_volume 21
creator Verbic, G.
Canizares, C.A.
description This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to behave in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result. Instead of using computationally demanding methods, the proposed approach needs 2n runs of the deterministic OPF for n uncertain variables to get the result in terms of the first three moments of the corresponding probability density functions. Another advantage of the 2PEM is that it does not require derivatives of the nonlinear function used in the computation of the probability distributions. The proposed method is tested on a simple three-bus test system and on a more realistic 129-bus test system. Results are compared against more accurate results obtained from MCS. The proposed method demonstrates a high level of accuracy for mean values when compared to the MCS; for standard deviations, the results are better in those cases when the number of uncertain variables is relatively low or when their dispersion is not large
doi_str_mv 10.1109/TPWRS.2006.881146
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2006_881146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717593</ieee_id><sourcerecordid>2343791361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-62b8a808f655a8c01670d2647d922a36eb8ed73128b16dc2f3e3548201dfeda83</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouH78APESvHjqmo8mnR5VdlVQXHTFixDSdorR2qxJlsV_b9cVBE9zmOd9mXkIOeJszDkrz-az54fHsWBMjwE4z_UWGXGlIGO6KLfJiAGoDErFdslejG9sAIfFiLzMgq9s5ToXk6vp_SK5D9vRmV9hoNPOr6jr6aTDOgVXu_RF72x4xxTphY3YUN9TS-crn8286xOdxHU8Ib3D9OqbA7LT2i7i4e_cJ0_TyfzyOru9v7q5PL_NainylGlRgQUGrVbKQs24LlgjdF40pRBWaqwAm0JyARXXTS1aiVLlIBhvWmwsyH1yuuldBP-5xJjMh4s1dp3t0S-jgVJzXRayHMiTf-SbX4Z-OM6AViALkcsB4huoDj7GgK1ZhOGt8GU4M2vb5se2Wds2G9tD5niTcYj4xxe8UKWU3-Dveto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865837243</pqid></control><display><type>article</type><title>Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method</title><source>IEEE Electronic Library (IEL)</source><creator>Verbic, G. ; Canizares, C.A.</creator><creatorcontrib>Verbic, G. ; Canizares, C.A.</creatorcontrib><description>This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to behave in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result. Instead of using computationally demanding methods, the proposed approach needs 2n runs of the deterministic OPF for n uncertain variables to get the result in terms of the first three moments of the corresponding probability density functions. Another advantage of the 2PEM is that it does not require derivatives of the nonlinear function used in the computation of the probability distributions. The proposed method is tested on a simple three-bus test system and on a more realistic 129-bus test system. Results are compared against more accurate results obtained from MCS. The proposed method demonstrates a high level of accuracy for mean values when compared to the MCS; for standard deviations, the results are better in those cases when the number of uncertain variables is relatively low or when their dispersion is not large</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2006.881146</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Byproducts ; Computation ; Electric utilities ; Electricity ; Electricity markets ; Electricity supply industry ; Estimates ; Load flow ; Markets ; Mathematical analysis ; Mathematical models ; Power markets ; Power system planning ; Power system stability ; probabilistic optimal power flow (OPF) ; Probability distribution ; Random variables ; Studies ; System testing ; Taylor series ; two-point estimate method (2PEM) ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1883-1893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-62b8a808f655a8c01670d2647d922a36eb8ed73128b16dc2f3e3548201dfeda83</citedby><cites>FETCH-LOGICAL-c324t-62b8a808f655a8c01670d2647d922a36eb8ed73128b16dc2f3e3548201dfeda83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1717593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verbic, G.</creatorcontrib><creatorcontrib>Canizares, C.A.</creatorcontrib><title>Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to behave in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result. Instead of using computationally demanding methods, the proposed approach needs 2n runs of the deterministic OPF for n uncertain variables to get the result in terms of the first three moments of the corresponding probability density functions. Another advantage of the 2PEM is that it does not require derivatives of the nonlinear function used in the computation of the probability distributions. The proposed method is tested on a simple three-bus test system and on a more realistic 129-bus test system. Results are compared against more accurate results obtained from MCS. The proposed method demonstrates a high level of accuracy for mean values when compared to the MCS; for standard deviations, the results are better in those cases when the number of uncertain variables is relatively low or when their dispersion is not large</description><subject>Byproducts</subject><subject>Computation</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Electricity markets</subject><subject>Electricity supply industry</subject><subject>Estimates</subject><subject>Load flow</subject><subject>Markets</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Power markets</subject><subject>Power system planning</subject><subject>Power system stability</subject><subject>probabilistic optimal power flow (OPF)</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Studies</subject><subject>System testing</subject><subject>Taylor series</subject><subject>two-point estimate method (2PEM)</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMouH78APESvHjqmo8mnR5VdlVQXHTFixDSdorR2qxJlsV_b9cVBE9zmOd9mXkIOeJszDkrz-az54fHsWBMjwE4z_UWGXGlIGO6KLfJiAGoDErFdslejG9sAIfFiLzMgq9s5ToXk6vp_SK5D9vRmV9hoNPOr6jr6aTDOgVXu_RF72x4xxTphY3YUN9TS-crn8286xOdxHU8Ib3D9OqbA7LT2i7i4e_cJ0_TyfzyOru9v7q5PL_NainylGlRgQUGrVbKQs24LlgjdF40pRBWaqwAm0JyARXXTS1aiVLlIBhvWmwsyH1yuuldBP-5xJjMh4s1dp3t0S-jgVJzXRayHMiTf-SbX4Z-OM6AViALkcsB4huoDj7GgK1ZhOGt8GU4M2vb5se2Wds2G9tD5niTcYj4xxe8UKWU3-Dveto</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Verbic, G.</creator><creator>Canizares, C.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20061101</creationdate><title>Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method</title><author>Verbic, G. ; Canizares, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-62b8a808f655a8c01670d2647d922a36eb8ed73128b16dc2f3e3548201dfeda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Byproducts</topic><topic>Computation</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Electricity markets</topic><topic>Electricity supply industry</topic><topic>Estimates</topic><topic>Load flow</topic><topic>Markets</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Power markets</topic><topic>Power system planning</topic><topic>Power system stability</topic><topic>probabilistic optimal power flow (OPF)</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Studies</topic><topic>System testing</topic><topic>Taylor series</topic><topic>two-point estimate method (2PEM)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbic, G.</creatorcontrib><creatorcontrib>Canizares, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verbic, G.</au><au>Canizares, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2006-11-01</date><risdate>2006</risdate><volume>21</volume><issue>4</issue><spage>1883</spage><epage>1893</epage><pages>1883-1893</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to behave in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result. Instead of using computationally demanding methods, the proposed approach needs 2n runs of the deterministic OPF for n uncertain variables to get the result in terms of the first three moments of the corresponding probability density functions. Another advantage of the 2PEM is that it does not require derivatives of the nonlinear function used in the computation of the probability distributions. The proposed method is tested on a simple three-bus test system and on a more realistic 129-bus test system. Results are compared against more accurate results obtained from MCS. The proposed method demonstrates a high level of accuracy for mean values when compared to the MCS; for standard deviations, the results are better in those cases when the number of uncertain variables is relatively low or when their dispersion is not large</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2006.881146</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1883-1893
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2006_881146
source IEEE Electronic Library (IEL)
subjects Byproducts
Computation
Electric utilities
Electricity
Electricity markets
Electricity supply industry
Estimates
Load flow
Markets
Mathematical analysis
Mathematical models
Power markets
Power system planning
Power system stability
probabilistic optimal power flow (OPF)
Probability distribution
Random variables
Studies
System testing
Taylor series
two-point estimate method (2PEM)
Uncertainty
title Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Optimal%20Power%20Flow%20in%20Electricity%20Markets%20Based%20on%20a%20Two-Point%20Estimate%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Verbic,%20G.&rft.date=2006-11-01&rft.volume=21&rft.issue=4&rft.spage=1883&rft.epage=1893&rft.pages=1883-1893&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2006.881146&rft_dat=%3Cproquest_RIE%3E2343791361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865837243&rft_id=info:pmid/&rft_ieee_id=1717593&rfr_iscdi=true