Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS
Recognition of partial discharge (PD) patterns in gas insulated switchgear (GIS), as a basis of fault diagnosis, provides essential information for the condition assessment of GIS. However, traditional recognition methods are limited to handcrafted feature extraction or are extremely sensitive to th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2022-08, Vol.37 (4), p.3335-3344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3344 |
---|---|
container_issue | 4 |
container_start_page | 3335 |
container_title | IEEE transactions on power delivery |
container_volume | 37 |
creator | Tian, Jiapeng Song, Hui Sheng, Gehao Jiang, Xiuchen |
description | Recognition of partial discharge (PD) patterns in gas insulated switchgear (GIS), as a basis of fault diagnosis, provides essential information for the condition assessment of GIS. However, traditional recognition methods are limited to handcrafted feature extraction or are extremely sensitive to the quantity and quality of datasets. Therefore, this article proposes a knowledge-driven algorithm, composed of the feature space and the knowledge space, to automatically extract PD features and improve the performance on noised, insufficient, and imbalanced datasets. First, the deep residual network (ResNet) in feature space extracts features from raw signals. Second, in knowledge space, the graph convolutional network (GCN) extracts additional information from the knowledge graph, which compensates for the missing information of original datasets. Finally, the algorithm recognizes patterns by ranking similarities between feature vectors and knowledge vectors. Verified by the comparison experiment, the proposed algorithm outperforms traditional methods with the accuracy of 99.58% on the experimental dataset and 95.67% on the online-detected dataset. Moreover, the accuracy of the proposed algorithm achieves 88.79% and 70.37% on noised and insufficient datasets, respectively, while the F-measure is higher than those of the comparison methods by 12.95% \sim 18.69% on imbalanced datasets. |
doi_str_mv | 10.1109/TPWRD.2021.3128036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2021_3128036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9615011</ieee_id><sourcerecordid>2692814572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-85ccdb83abe1a631e146034651b13af51a9e0e1fc4988914113b8268aa826f283</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab1s4nmx0-5HezSgSMRIEOOx6S6zS8m6xbZo-PcuQrzMJJP3mZk8hFwDHQBQebeYfcxHA0YZDDgwQXl2QnogeR4njIpT0qNCpLGQeX5OLrxfU0oTKmmPvDy39qfBZY3xyJlvbKM5lrZuTTC2jV4wrOzSNrbeRbaKZtoFo5toZHy50q7GbhICutZHpo3Gk7dLclbpxuPVsffJ--PDYvgUT1_Hk-H9NC6ZTEMs0rJcFoLrAkFnHBCSjPIkS6EArqsUtESKUJWJFEJCAsALwTKhdVcrJnif3B72bpz92qIPam23ru1OKpZJJiBJc9al2CFVOuu9w0ptnPnUbqeAqr029adN7bWpo7YOujlABhH_AZlBSrs3fgErBWgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692814572</pqid></control><display><type>article</type><title>Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS</title><source>IEEE</source><creator>Tian, Jiapeng ; Song, Hui ; Sheng, Gehao ; Jiang, Xiuchen</creator><creatorcontrib>Tian, Jiapeng ; Song, Hui ; Sheng, Gehao ; Jiang, Xiuchen</creatorcontrib><description>Recognition of partial discharge (PD) patterns in gas insulated switchgear (GIS), as a basis of fault diagnosis, provides essential information for the condition assessment of GIS. However, traditional recognition methods are limited to handcrafted feature extraction or are extremely sensitive to the quantity and quality of datasets. Therefore, this article proposes a knowledge-driven algorithm, composed of the feature space and the knowledge space, to automatically extract PD features and improve the performance on noised, insufficient, and imbalanced datasets. First, the deep residual network (ResNet) in feature space extracts features from raw signals. Second, in knowledge space, the graph convolutional network (GCN) extracts additional information from the knowledge graph, which compensates for the missing information of original datasets. Finally, the algorithm recognizes patterns by ranking similarities between feature vectors and knowledge vectors. Verified by the comparison experiment, the proposed algorithm outperforms traditional methods with the accuracy of 99.58% on the experimental dataset and 95.67% on the online-detected dataset. Moreover, the accuracy of the proposed algorithm achieves 88.79% and 70.37% on noised and insufficient datasets, respectively, while the F-measure is higher than those of the comparison methods by 12.95% <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 18.69% on imbalanced datasets.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2021.3128036</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Datasets ; Discharge ; Discharges (electric) ; Fault diagnosis ; Feature extraction ; Gas insulated switchgear ; Gas insulation ; Interference ; Knowledge ; Knowledge engineering ; knowledge graph ; Knowledge representation ; partial discharge ; Partial discharges ; Pattern recognition ; Switchgear</subject><ispartof>IEEE transactions on power delivery, 2022-08, Vol.37 (4), p.3335-3344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-85ccdb83abe1a631e146034651b13af51a9e0e1fc4988914113b8268aa826f283</citedby><cites>FETCH-LOGICAL-c295t-85ccdb83abe1a631e146034651b13af51a9e0e1fc4988914113b8268aa826f283</cites><orcidid>0000-0002-9454-5284 ; 0000-0002-8034-2515 ; 0000-0002-5886-0690 ; 0000-0001-5439-6942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9615011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9615011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Jiapeng</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Sheng, Gehao</creatorcontrib><creatorcontrib>Jiang, Xiuchen</creatorcontrib><title>Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Recognition of partial discharge (PD) patterns in gas insulated switchgear (GIS), as a basis of fault diagnosis, provides essential information for the condition assessment of GIS. However, traditional recognition methods are limited to handcrafted feature extraction or are extremely sensitive to the quantity and quality of datasets. Therefore, this article proposes a knowledge-driven algorithm, composed of the feature space and the knowledge space, to automatically extract PD features and improve the performance on noised, insufficient, and imbalanced datasets. First, the deep residual network (ResNet) in feature space extracts features from raw signals. Second, in knowledge space, the graph convolutional network (GCN) extracts additional information from the knowledge graph, which compensates for the missing information of original datasets. Finally, the algorithm recognizes patterns by ranking similarities between feature vectors and knowledge vectors. Verified by the comparison experiment, the proposed algorithm outperforms traditional methods with the accuracy of 99.58% on the experimental dataset and 95.67% on the online-detected dataset. Moreover, the accuracy of the proposed algorithm achieves 88.79% and 70.37% on noised and insufficient datasets, respectively, while the F-measure is higher than those of the comparison methods by 12.95% <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 18.69% on imbalanced datasets.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Discharge</subject><subject>Discharges (electric)</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Gas insulated switchgear</subject><subject>Gas insulation</subject><subject>Interference</subject><subject>Knowledge</subject><subject>Knowledge engineering</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>partial discharge</subject><subject>Partial discharges</subject><subject>Pattern recognition</subject><subject>Switchgear</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab1s4nmx0-5HezSgSMRIEOOx6S6zS8m6xbZo-PcuQrzMJJP3mZk8hFwDHQBQebeYfcxHA0YZDDgwQXl2QnogeR4njIpT0qNCpLGQeX5OLrxfU0oTKmmPvDy39qfBZY3xyJlvbKM5lrZuTTC2jV4wrOzSNrbeRbaKZtoFo5toZHy50q7GbhICutZHpo3Gk7dLclbpxuPVsffJ--PDYvgUT1_Hk-H9NC6ZTEMs0rJcFoLrAkFnHBCSjPIkS6EArqsUtESKUJWJFEJCAsALwTKhdVcrJnif3B72bpz92qIPam23ru1OKpZJJiBJc9al2CFVOuu9w0ptnPnUbqeAqr029adN7bWpo7YOujlABhH_AZlBSrs3fgErBWgk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Tian, Jiapeng</creator><creator>Song, Hui</creator><creator>Sheng, Gehao</creator><creator>Jiang, Xiuchen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9454-5284</orcidid><orcidid>https://orcid.org/0000-0002-8034-2515</orcidid><orcidid>https://orcid.org/0000-0002-5886-0690</orcidid><orcidid>https://orcid.org/0000-0001-5439-6942</orcidid></search><sort><creationdate>20220801</creationdate><title>Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS</title><author>Tian, Jiapeng ; Song, Hui ; Sheng, Gehao ; Jiang, Xiuchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-85ccdb83abe1a631e146034651b13af51a9e0e1fc4988914113b8268aa826f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Discharge</topic><topic>Discharges (electric)</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Gas insulated switchgear</topic><topic>Gas insulation</topic><topic>Interference</topic><topic>Knowledge</topic><topic>Knowledge engineering</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>partial discharge</topic><topic>Partial discharges</topic><topic>Pattern recognition</topic><topic>Switchgear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jiapeng</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Sheng, Gehao</creatorcontrib><creatorcontrib>Jiang, Xiuchen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Jiapeng</au><au>Song, Hui</au><au>Sheng, Gehao</au><au>Jiang, Xiuchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>3335</spage><epage>3344</epage><pages>3335-3344</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Recognition of partial discharge (PD) patterns in gas insulated switchgear (GIS), as a basis of fault diagnosis, provides essential information for the condition assessment of GIS. However, traditional recognition methods are limited to handcrafted feature extraction or are extremely sensitive to the quantity and quality of datasets. Therefore, this article proposes a knowledge-driven algorithm, composed of the feature space and the knowledge space, to automatically extract PD features and improve the performance on noised, insufficient, and imbalanced datasets. First, the deep residual network (ResNet) in feature space extracts features from raw signals. Second, in knowledge space, the graph convolutional network (GCN) extracts additional information from the knowledge graph, which compensates for the missing information of original datasets. Finally, the algorithm recognizes patterns by ranking similarities between feature vectors and knowledge vectors. Verified by the comparison experiment, the proposed algorithm outperforms traditional methods with the accuracy of 99.58% on the experimental dataset and 95.67% on the online-detected dataset. Moreover, the accuracy of the proposed algorithm achieves 88.79% and 70.37% on noised and insufficient datasets, respectively, while the F-measure is higher than those of the comparison methods by 12.95% <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 18.69% on imbalanced datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2021.3128036</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9454-5284</orcidid><orcidid>https://orcid.org/0000-0002-8034-2515</orcidid><orcidid>https://orcid.org/0000-0002-5886-0690</orcidid><orcidid>https://orcid.org/0000-0001-5439-6942</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2022-08, Vol.37 (4), p.3335-3344 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRD_2021_3128036 |
source | IEEE |
subjects | Algorithms Datasets Discharge Discharges (electric) Fault diagnosis Feature extraction Gas insulated switchgear Gas insulation Interference Knowledge Knowledge engineering knowledge graph Knowledge representation partial discharge Partial discharges Pattern recognition Switchgear |
title | Knowledge-Driven Recognition Methodology of Partial Discharge Patterns in GIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Driven%20Recognition%20Methodology%20of%20Partial%20Discharge%20Patterns%20in%20GIS&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Tian,%20Jiapeng&rft.date=2022-08-01&rft.volume=37&rft.issue=4&rft.spage=3335&rft.epage=3344&rft.pages=3335-3344&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2021.3128036&rft_dat=%3Cproquest_RIE%3E2692814572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692814572&rft_id=info:pmid/&rft_ieee_id=9615011&rfr_iscdi=true |