Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters

DC technology has gained considerable interest in the medium voltage applications due to the benefits over the AC counterpart. However, to utilize the full capacity of this development, the selection of a suitable power electronic converter topology is a key aspect. From the pool of voltage source c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2021-12, Vol.36 (6), p.3945-3955
Hauptverfasser: Abeynayake, Gayan, Li, Gen, Joseph, Tibin, Liang, Jun, Ming, Wenlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3955
container_issue 6
container_start_page 3945
container_title IEEE transactions on power delivery
container_volume 36
creator Abeynayake, Gayan
Li, Gen
Joseph, Tibin
Liang, Jun
Ming, Wenlong
description DC technology has gained considerable interest in the medium voltage applications due to the benefits over the AC counterpart. However, to utilize the full capacity of this development, the selection of a suitable power electronic converter topology is a key aspect. From the pool of voltage source converters (VSC's), it is unclear which topology is suitable for multi-megawatt applications at medium voltage dc (MVdc) levels. To address this, the paper proposes a selection guideline based on reliability and optimum redundancy levels of VSCs for MVdc applications. This will be combined with other functional factors such as operational efficiency and return-on-investment. Three candidate multi-level topologies namely three-level neutral point clamped converter (3L-NPC), modular multi-level converter (MMC) and cascaded 3L-NPC (which is being used for the first MVdc link in the U.K.) have been evaluated over two-level-VSC from \pm10 kV to \pm50 kV. Results show that with the increase of MVdc voltage level MMC shows better performance whereas at low MVdc voltage levels 3L-NPC is the prominent topology.
doi_str_mv 10.1109/TPWRD.2021.3051531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2021_3051531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9321748</ieee_id><sourcerecordid>2601644633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-48c3da357feae749c733356b002e075d1cb4c1910facfab080f44ea6970e0c713</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8K3tp50qRNcznmJ2xM5tTLkKankNG1M0kH-_d2H3h1OIfnfTk8hNxSGFEK8nH58bN4GiWQ0BGDlKaMnpEBlUzEPIH8nAwgz9M4l0JckivvVwDAQcKAqAXWVhe2tmEX6aaMJq0P8dxZbAKW0bjR9c5b_9Df1xvtrG-bA_aJNZpg-62tollXBxtPcYt1NPsuTQ83W3QBnb8mF5WuPd6c5pB8vTwvJ2_xdP76PhlPY8OYDDHPDSs1S0WFGgWXRjDG0qwASBBEWlJTcEMlhUqbSheQQ8U56kwKQDCCsiG5P_ZuXPvboQ9q1Xau_96rJAOacZ71jUOSHCnjWu8dVmrj7Fq7naKg9iLVQaTai1QnkX3o7hiyiPgfkCyhgufsD0LIb1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601644633</pqid></control><display><type>article</type><title>Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters</title><source>IEEE Electronic Library (IEL)</source><creator>Abeynayake, Gayan ; Li, Gen ; Joseph, Tibin ; Liang, Jun ; Ming, Wenlong</creator><creatorcontrib>Abeynayake, Gayan ; Li, Gen ; Joseph, Tibin ; Liang, Jun ; Ming, Wenlong</creatorcontrib><description><![CDATA[DC technology has gained considerable interest in the medium voltage applications due to the benefits over the AC counterpart. However, to utilize the full capacity of this development, the selection of a suitable power electronic converter topology is a key aspect. From the pool of voltage source converters (VSC's), it is unclear which topology is suitable for multi-megawatt applications at medium voltage dc (MVdc) levels. To address this, the paper proposes a selection guideline based on reliability and optimum redundancy levels of VSCs for MVdc applications. This will be combined with other functional factors such as operational efficiency and return-on-investment. Three candidate multi-level topologies namely three-level neutral point clamped converter (3L-NPC), modular multi-level converter (MMC) and cascaded 3L-NPC (which is being used for the first MVdc link in the U.K.) have been evaluated over two-level-VSC from <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>10 kV to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>50 kV. Results show that with the increase of MVdc voltage level MMC shows better performance whereas at low MVdc voltage levels 3L-NPC is the prominent topology.]]></description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2021.3051531</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Availability ; Converters ; Cost analysis ; Electric potential ; Insulated gate bipolar transistors ; Investment ; MVdc ; operational efficiency ; Power conversion ; Power system reliability ; Redundancy ; Reliability ; Reliability analysis ; return on investment ; Topology ; Voltage</subject><ispartof>IEEE transactions on power delivery, 2021-12, Vol.36 (6), p.3945-3955</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-48c3da357feae749c733356b002e075d1cb4c1910facfab080f44ea6970e0c713</citedby><cites>FETCH-LOGICAL-c339t-48c3da357feae749c733356b002e075d1cb4c1910facfab080f44ea6970e0c713</cites><orcidid>0000-0003-4647-1118 ; 0000-0001-7511-449X ; 0000-0003-1780-7292 ; 0000-0002-0649-9493 ; 0000-0002-1079-4540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9321748$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Abeynayake, Gayan</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>Joseph, Tibin</creatorcontrib><creatorcontrib>Liang, Jun</creatorcontrib><creatorcontrib>Ming, Wenlong</creatorcontrib><title>Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description><![CDATA[DC technology has gained considerable interest in the medium voltage applications due to the benefits over the AC counterpart. However, to utilize the full capacity of this development, the selection of a suitable power electronic converter topology is a key aspect. From the pool of voltage source converters (VSC's), it is unclear which topology is suitable for multi-megawatt applications at medium voltage dc (MVdc) levels. To address this, the paper proposes a selection guideline based on reliability and optimum redundancy levels of VSCs for MVdc applications. This will be combined with other functional factors such as operational efficiency and return-on-investment. Three candidate multi-level topologies namely three-level neutral point clamped converter (3L-NPC), modular multi-level converter (MMC) and cascaded 3L-NPC (which is being used for the first MVdc link in the U.K.) have been evaluated over two-level-VSC from <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>10 kV to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>50 kV. Results show that with the increase of MVdc voltage level MMC shows better performance whereas at low MVdc voltage levels 3L-NPC is the prominent topology.]]></description><subject>Availability</subject><subject>Converters</subject><subject>Cost analysis</subject><subject>Electric potential</subject><subject>Insulated gate bipolar transistors</subject><subject>Investment</subject><subject>MVdc</subject><subject>operational efficiency</subject><subject>Power conversion</subject><subject>Power system reliability</subject><subject>Redundancy</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>return on investment</subject><subject>Topology</subject><subject>Voltage</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8K3tp50qRNcznmJ2xM5tTLkKankNG1M0kH-_d2H3h1OIfnfTk8hNxSGFEK8nH58bN4GiWQ0BGDlKaMnpEBlUzEPIH8nAwgz9M4l0JckivvVwDAQcKAqAXWVhe2tmEX6aaMJq0P8dxZbAKW0bjR9c5b_9Df1xvtrG-bA_aJNZpg-62tollXBxtPcYt1NPsuTQ83W3QBnb8mF5WuPd6c5pB8vTwvJ2_xdP76PhlPY8OYDDHPDSs1S0WFGgWXRjDG0qwASBBEWlJTcEMlhUqbSheQQ8U56kwKQDCCsiG5P_ZuXPvboQ9q1Xau_96rJAOacZ71jUOSHCnjWu8dVmrj7Fq7naKg9iLVQaTai1QnkX3o7hiyiPgfkCyhgufsD0LIb1U</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Abeynayake, Gayan</creator><creator>Li, Gen</creator><creator>Joseph, Tibin</creator><creator>Liang, Jun</creator><creator>Ming, Wenlong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4647-1118</orcidid><orcidid>https://orcid.org/0000-0001-7511-449X</orcidid><orcidid>https://orcid.org/0000-0003-1780-7292</orcidid><orcidid>https://orcid.org/0000-0002-0649-9493</orcidid><orcidid>https://orcid.org/0000-0002-1079-4540</orcidid></search><sort><creationdate>20211201</creationdate><title>Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters</title><author>Abeynayake, Gayan ; Li, Gen ; Joseph, Tibin ; Liang, Jun ; Ming, Wenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-48c3da357feae749c733356b002e075d1cb4c1910facfab080f44ea6970e0c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Availability</topic><topic>Converters</topic><topic>Cost analysis</topic><topic>Electric potential</topic><topic>Insulated gate bipolar transistors</topic><topic>Investment</topic><topic>MVdc</topic><topic>operational efficiency</topic><topic>Power conversion</topic><topic>Power system reliability</topic><topic>Redundancy</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>return on investment</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abeynayake, Gayan</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>Joseph, Tibin</creatorcontrib><creatorcontrib>Liang, Jun</creatorcontrib><creatorcontrib>Ming, Wenlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abeynayake, Gayan</au><au>Li, Gen</au><au>Joseph, Tibin</au><au>Liang, Jun</au><au>Ming, Wenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>3945</spage><epage>3955</epage><pages>3945-3955</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract><![CDATA[DC technology has gained considerable interest in the medium voltage applications due to the benefits over the AC counterpart. However, to utilize the full capacity of this development, the selection of a suitable power electronic converter topology is a key aspect. From the pool of voltage source converters (VSC's), it is unclear which topology is suitable for multi-megawatt applications at medium voltage dc (MVdc) levels. To address this, the paper proposes a selection guideline based on reliability and optimum redundancy levels of VSCs for MVdc applications. This will be combined with other functional factors such as operational efficiency and return-on-investment. Three candidate multi-level topologies namely three-level neutral point clamped converter (3L-NPC), modular multi-level converter (MMC) and cascaded 3L-NPC (which is being used for the first MVdc link in the U.K.) have been evaluated over two-level-VSC from <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>10 kV to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>50 kV. Results show that with the increase of MVdc voltage level MMC shows better performance whereas at low MVdc voltage levels 3L-NPC is the prominent topology.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2021.3051531</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4647-1118</orcidid><orcidid>https://orcid.org/0000-0001-7511-449X</orcidid><orcidid>https://orcid.org/0000-0003-1780-7292</orcidid><orcidid>https://orcid.org/0000-0002-0649-9493</orcidid><orcidid>https://orcid.org/0000-0002-1079-4540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2021-12, Vol.36 (6), p.3945-3955
issn 0885-8977
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_TPWRD_2021_3051531
source IEEE Electronic Library (IEL)
subjects Availability
Converters
Cost analysis
Electric potential
Insulated gate bipolar transistors
Investment
MVdc
operational efficiency
Power conversion
Power system reliability
Redundancy
Reliability
Reliability analysis
return on investment
Topology
Voltage
title Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20and%20Cost-Oriented%20Analysis,%20Comparison%20and%20Selection%20of%20Multi-Level%20MVdc%20Converters&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Abeynayake,%20Gayan&rft.date=2021-12-01&rft.volume=36&rft.issue=6&rft.spage=3945&rft.epage=3955&rft.pages=3945-3955&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2021.3051531&rft_dat=%3Cproquest_cross%3E2601644633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601644633&rft_id=info:pmid/&rft_ieee_id=9321748&rfr_iscdi=true