Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2014-08, Vol.29 (4), p.1789-1797
1. Verfasser: Eriksson, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1797
container_issue 4
container_start_page 1789
container_title IEEE transactions on power delivery
container_volume 29
creator Eriksson, Robert
description The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast as possible, and is based on Lyapunov theory considering the nonlinear behavior. The time optimal controller is of a bang-bang type and uses wide-area measurements as feedback signals. Nonlinear simulations are run in the Nordic32 test system implemented in PowerFactory/DIgSILENT with an interface to Matlab where the controller is implemented.
doi_str_mv 10.1109/TPWRD.2013.2293198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2013_2293198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6692901</ieee_id><sourcerecordid>3386123571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-90519b77184483dc43bd4b954abb464bd816656798da73659e63c18447e3db473</originalsourceid><addsrcrecordid>eNpdkV2LEzEYhYMoWKt_QG8CIngzNZlk8nFZp7ouVFzWqpchM5PZTU0nNcnsMv_ejC29EAIv4TznkLwHgNcYrTBG8sPu5tftZlUiTFZlKQmW4glYYEl4QUsknoIFEqIqhOT8OXgR4x4hRJFECzDV3ofODjqZDtZ-SME76Hv4dXTJJhMOWXJwU8OrYDt44x9NgNfD3rTJ-iHC3ufr4Rj8Q7bf-uRDsR7unIHfk26ss2mCH3XMmh_gdtLHcfAPcHdvfJhegme9dtG8Os8l-PH5067-Umy_XV3X623RUsZSIVGFZcM5FpQK0rWUNB1tZEV101BGm05gxirGpeg0J6yShpF2hrkhXUM5WYLilBsfzXFs1DHYgw6T8tqqjf25Vj7cqd_pXuGqopJk_v2Jz7_6M5qY1MHG1jinB-PHOGOSI1KyOfrtf-jejyEvbKao4EQQPFPliWqDjzGY_vIEjNTcnvrXnprbU-f2sundOVrHVrs-6KG18eIsBZOM5LMEb06cNcZcZMZkKXPcX8CootY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548738317</pqid></control><display><type>article</type><title>Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Eriksson, Robert</creator><creatorcontrib>Eriksson, Robert</creatorcontrib><description>The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast as possible, and is based on Lyapunov theory considering the nonlinear behavior. The time optimal controller is of a bang-bang type and uses wide-area measurements as feedback signals. Nonlinear simulations are run in the Nordic32 test system implemented in PowerFactory/DIgSILENT with an interface to Matlab where the controller is implemented.</description><identifier>ISSN: 0885-8977</identifier><identifier>ISSN: 1937-4208</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2013.2293198</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Control Lyapunov function ; Control systems ; coordinated control ; Direct current ; Direct current networks ; Disturbances ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; energy function ; Exact sciences and technology ; high-voltage direct current (HVDC) ; HVDC transmission ; Lyapunov methods ; Matlab ; multiterminal dc (MTDC) ; Nonlinearity ; Power networks and lines ; Power system stability ; Regulation and control ; small-signal stability ; Stability ; Stability criteria ; Strategy ; Time optimal ; Trajectory ; Transient analysis ; transient stability</subject><ispartof>IEEE transactions on power delivery, 2014-08, Vol.29 (4), p.1789-1797</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-90519b77184483dc43bd4b954abb464bd816656798da73659e63c18447e3db473</citedby><cites>FETCH-LOGICAL-c466t-90519b77184483dc43bd4b954abb464bd816656798da73659e63c18447e3db473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6692901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6692901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28696396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155493$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eriksson, Robert</creatorcontrib><title>Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast as possible, and is based on Lyapunov theory considering the nonlinear behavior. The time optimal controller is of a bang-bang type and uses wide-area measurements as feedback signals. Nonlinear simulations are run in the Nordic32 test system implemented in PowerFactory/DIgSILENT with an interface to Matlab where the controller is implemented.</description><subject>Applied sciences</subject><subject>Control Lyapunov function</subject><subject>Control systems</subject><subject>coordinated control</subject><subject>Direct current</subject><subject>Direct current networks</subject><subject>Disturbances</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>energy function</subject><subject>Exact sciences and technology</subject><subject>high-voltage direct current (HVDC)</subject><subject>HVDC transmission</subject><subject>Lyapunov methods</subject><subject>Matlab</subject><subject>multiterminal dc (MTDC)</subject><subject>Nonlinearity</subject><subject>Power networks and lines</subject><subject>Power system stability</subject><subject>Regulation and control</subject><subject>small-signal stability</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Strategy</subject><subject>Time optimal</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>transient stability</subject><issn>0885-8977</issn><issn>1937-4208</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV2LEzEYhYMoWKt_QG8CIngzNZlk8nFZp7ouVFzWqpchM5PZTU0nNcnsMv_ejC29EAIv4TznkLwHgNcYrTBG8sPu5tftZlUiTFZlKQmW4glYYEl4QUsknoIFEqIqhOT8OXgR4x4hRJFECzDV3ofODjqZDtZ-SME76Hv4dXTJJhMOWXJwU8OrYDt44x9NgNfD3rTJ-iHC3ufr4Rj8Q7bf-uRDsR7unIHfk26ss2mCH3XMmh_gdtLHcfAPcHdvfJhegme9dtG8Os8l-PH5067-Umy_XV3X623RUsZSIVGFZcM5FpQK0rWUNB1tZEV101BGm05gxirGpeg0J6yShpF2hrkhXUM5WYLilBsfzXFs1DHYgw6T8tqqjf25Vj7cqd_pXuGqopJk_v2Jz7_6M5qY1MHG1jinB-PHOGOSI1KyOfrtf-jejyEvbKao4EQQPFPliWqDjzGY_vIEjNTcnvrXnprbU-f2sundOVrHVrs-6KG18eIsBZOM5LMEb06cNcZcZMZkKXPcX8CootY</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Eriksson, Robert</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20140801</creationdate><title>Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory</title><author>Eriksson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-90519b77184483dc43bd4b954abb464bd816656798da73659e63c18447e3db473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Control Lyapunov function</topic><topic>Control systems</topic><topic>coordinated control</topic><topic>Direct current</topic><topic>Direct current networks</topic><topic>Disturbances</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>energy function</topic><topic>Exact sciences and technology</topic><topic>high-voltage direct current (HVDC)</topic><topic>HVDC transmission</topic><topic>Lyapunov methods</topic><topic>Matlab</topic><topic>multiterminal dc (MTDC)</topic><topic>Nonlinearity</topic><topic>Power networks and lines</topic><topic>Power system stability</topic><topic>Regulation and control</topic><topic>small-signal stability</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Strategy</topic><topic>Time optimal</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksson, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eriksson, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>29</volume><issue>4</issue><spage>1789</spage><epage>1797</epage><pages>1789-1797</pages><issn>0885-8977</issn><issn>1937-4208</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast as possible, and is based on Lyapunov theory considering the nonlinear behavior. The time optimal controller is of a bang-bang type and uses wide-area measurements as feedback signals. Nonlinear simulations are run in the Nordic32 test system implemented in PowerFactory/DIgSILENT with an interface to Matlab where the controller is implemented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2013.2293198</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2014-08, Vol.29 (4), p.1789-1797
issn 0885-8977
1937-4208
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_TPWRD_2013_2293198
source IEEE Electronic Library (IEL)
subjects Applied sciences
Control Lyapunov function
Control systems
coordinated control
Direct current
Direct current networks
Disturbances
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
energy function
Exact sciences and technology
high-voltage direct current (HVDC)
HVDC transmission
Lyapunov methods
Matlab
multiterminal dc (MTDC)
Nonlinearity
Power networks and lines
Power system stability
Regulation and control
small-signal stability
Stability
Stability criteria
Strategy
Time optimal
Trajectory
Transient analysis
transient stability
title Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Control%20of%20Multiterminal%20DC%20Grid%20Power%20Injections%20for%20Improved%20Rotor-Angle%20Stability%20Based%20on%20Lyapunov%20Theory&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Eriksson,%20Robert&rft.date=2014-08-01&rft.volume=29&rft.issue=4&rft.spage=1789&rft.epage=1797&rft.pages=1789-1797&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2013.2293198&rft_dat=%3Cproquest_RIE%3E3386123571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548738317&rft_id=info:pmid/&rft_ieee_id=6692901&rfr_iscdi=true