A neural network based method for leakage current prediction of polymeric insulators

This letter describes a neural network approach to the prediction of the leakage current (LC) on silicone rubber insulators exposed to salt-fog. The validity of the approach was examined by testing several insulators in a salt-fog chamber. Feed-forward back propagation was found as the best method a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2006-01, Vol.21 (1), p.506-507
Hauptverfasser: Jahromi, A.N., El-Hag, A.H., Jayaram, S.H., Cherney, E.A., Sanaye-Pasand, M., Mohseni, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 1
container_start_page 506
container_title IEEE transactions on power delivery
container_volume 21
creator Jahromi, A.N.
El-Hag, A.H.
Jayaram, S.H.
Cherney, E.A.
Sanaye-Pasand, M.
Mohseni, H.
description This letter describes a neural network approach to the prediction of the leakage current (LC) on silicone rubber insulators exposed to salt-fog. The validity of the approach was examined by testing several insulators in a salt-fog chamber. Feed-forward back propagation was found as the best method among several training methods evaluated for the prediction of the LC. The predicted LC with this method has less than 12% error for the tested cases.
doi_str_mv 10.1109/TPWRD.2005.858805
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2005_858805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1564240</ieee_id><sourcerecordid>896176417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9c09c66490291c0e4216c2fa929e275d1724f13aa4e853c44e1f4ef2cba783503</originalsourceid><addsrcrecordid>eNp9kUtLJDEUhYMo2D5-gLgJwsysqufmnSxFZ0ZBUIYWlyGmb2ZKqyttUoX476e0BWEWrs7ifufA5SPkiMGcMXDfFzd3v8_nHEDNrbIW1BaZMSdMIznYbTIDa1VjnTG7ZK_WBwCQ4GBGFqe0x7GEborhOZdHeh8qLukKh795SVMutMPwGP4gjWMp2A90XXDZxqHNPc2JrnP3ssLSRtr2dezCkEs9IDspdBUP33Of3P78sTi7aK6uf12enV41UVg1NC6Ci1pLB9yxCCg505Gn4LhDbtSSGS4TEyFItEpEKZEliYnH-2CsUCD2ybfN7rrkpxHr4Fdtjdh1occ8Vm-dZkZLZiby66ckt6CZ5m4CT_4DH_JY-ukLb7UWViqtJohtoFhyrQWTX5d2FcqLZ-Bfdfg3Hf5Vh9_omDpf3odDjaFLJfSxrR9FI6xzzk7c8YZrEfHjrLTkEsQ_gP-S6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866384565</pqid></control><display><type>article</type><title>A neural network based method for leakage current prediction of polymeric insulators</title><source>IEEE Electronic Library (IEL)</source><creator>Jahromi, A.N. ; El-Hag, A.H. ; Jayaram, S.H. ; Cherney, E.A. ; Sanaye-Pasand, M. ; Mohseni, H.</creator><creatorcontrib>Jahromi, A.N. ; El-Hag, A.H. ; Jayaram, S.H. ; Cherney, E.A. ; Sanaye-Pasand, M. ; Mohseni, H.</creatorcontrib><description>This letter describes a neural network approach to the prediction of the leakage current (LC) on silicone rubber insulators exposed to salt-fog. The validity of the approach was examined by testing several insulators in a salt-fog chamber. Feed-forward back propagation was found as the best method among several training methods evaluated for the prediction of the LC. The predicted LC with this method has less than 12% error for the tested cases.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2005.858805</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aging ; Applied sciences ; Back propagation ; Chambers ; Degradation ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electronics ; Errors ; Exact sciences and technology ; Feedforward systems ; Insulation life ; Insulator testing ; Insulators ; Leakage current ; neural network ; Neural networks ; Plastic insulation ; polymeric insulator ; Polymers ; Rubber ; salt-fog test ; Silicone rubber ; Training ; Various equipment and components</subject><ispartof>IEEE transactions on power delivery, 2006-01, Vol.21 (1), p.506-507</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9c09c66490291c0e4216c2fa929e275d1724f13aa4e853c44e1f4ef2cba783503</citedby><cites>FETCH-LOGICAL-c385t-9c09c66490291c0e4216c2fa929e275d1724f13aa4e853c44e1f4ef2cba783503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1564240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1564240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17389998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahromi, A.N.</creatorcontrib><creatorcontrib>El-Hag, A.H.</creatorcontrib><creatorcontrib>Jayaram, S.H.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Sanaye-Pasand, M.</creatorcontrib><creatorcontrib>Mohseni, H.</creatorcontrib><title>A neural network based method for leakage current prediction of polymeric insulators</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This letter describes a neural network approach to the prediction of the leakage current (LC) on silicone rubber insulators exposed to salt-fog. The validity of the approach was examined by testing several insulators in a salt-fog chamber. Feed-forward back propagation was found as the best method among several training methods evaluated for the prediction of the LC. The predicted LC with this method has less than 12% error for the tested cases.</description><subject>Aging</subject><subject>Applied sciences</subject><subject>Back propagation</subject><subject>Chambers</subject><subject>Degradation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronics</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Feedforward systems</subject><subject>Insulation life</subject><subject>Insulator testing</subject><subject>Insulators</subject><subject>Leakage current</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Plastic insulation</subject><subject>polymeric insulator</subject><subject>Polymers</subject><subject>Rubber</subject><subject>salt-fog test</subject><subject>Silicone rubber</subject><subject>Training</subject><subject>Various equipment and components</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLJDEUhYMo2D5-gLgJwsysqufmnSxFZ0ZBUIYWlyGmb2ZKqyttUoX476e0BWEWrs7ifufA5SPkiMGcMXDfFzd3v8_nHEDNrbIW1BaZMSdMIznYbTIDa1VjnTG7ZK_WBwCQ4GBGFqe0x7GEborhOZdHeh8qLukKh795SVMutMPwGP4gjWMp2A90XXDZxqHNPc2JrnP3ssLSRtr2dezCkEs9IDspdBUP33Of3P78sTi7aK6uf12enV41UVg1NC6Ci1pLB9yxCCg505Gn4LhDbtSSGS4TEyFItEpEKZEliYnH-2CsUCD2ybfN7rrkpxHr4Fdtjdh1occ8Vm-dZkZLZiby66ckt6CZ5m4CT_4DH_JY-ukLb7UWViqtJohtoFhyrQWTX5d2FcqLZ-Bfdfg3Hf5Vh9_omDpf3odDjaFLJfSxrR9FI6xzzk7c8YZrEfHjrLTkEsQ_gP-S6w</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Jahromi, A.N.</creator><creator>El-Hag, A.H.</creator><creator>Jayaram, S.H.</creator><creator>Cherney, E.A.</creator><creator>Sanaye-Pasand, M.</creator><creator>Mohseni, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200601</creationdate><title>A neural network based method for leakage current prediction of polymeric insulators</title><author>Jahromi, A.N. ; El-Hag, A.H. ; Jayaram, S.H. ; Cherney, E.A. ; Sanaye-Pasand, M. ; Mohseni, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9c09c66490291c0e4216c2fa929e275d1724f13aa4e853c44e1f4ef2cba783503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aging</topic><topic>Applied sciences</topic><topic>Back propagation</topic><topic>Chambers</topic><topic>Degradation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronics</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Feedforward systems</topic><topic>Insulation life</topic><topic>Insulator testing</topic><topic>Insulators</topic><topic>Leakage current</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Plastic insulation</topic><topic>polymeric insulator</topic><topic>Polymers</topic><topic>Rubber</topic><topic>salt-fog test</topic><topic>Silicone rubber</topic><topic>Training</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahromi, A.N.</creatorcontrib><creatorcontrib>El-Hag, A.H.</creatorcontrib><creatorcontrib>Jayaram, S.H.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Sanaye-Pasand, M.</creatorcontrib><creatorcontrib>Mohseni, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jahromi, A.N.</au><au>El-Hag, A.H.</au><au>Jayaram, S.H.</au><au>Cherney, E.A.</au><au>Sanaye-Pasand, M.</au><au>Mohseni, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network based method for leakage current prediction of polymeric insulators</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2006-01</date><risdate>2006</risdate><volume>21</volume><issue>1</issue><spage>506</spage><epage>507</epage><pages>506-507</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This letter describes a neural network approach to the prediction of the leakage current (LC) on silicone rubber insulators exposed to salt-fog. The validity of the approach was examined by testing several insulators in a salt-fog chamber. Feed-forward back propagation was found as the best method among several training methods evaluated for the prediction of the LC. The predicted LC with this method has less than 12% error for the tested cases.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2005.858805</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2006-01, Vol.21 (1), p.506-507
issn 0885-8977
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_TPWRD_2005_858805
source IEEE Electronic Library (IEL)
subjects Aging
Applied sciences
Back propagation
Chambers
Degradation
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electronics
Errors
Exact sciences and technology
Feedforward systems
Insulation life
Insulator testing
Insulators
Leakage current
neural network
Neural networks
Plastic insulation
polymeric insulator
Polymers
Rubber
salt-fog test
Silicone rubber
Training
Various equipment and components
title A neural network based method for leakage current prediction of polymeric insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20based%20method%20for%20leakage%20current%20prediction%20of%20polymeric%20insulators&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Jahromi,%20A.N.&rft.date=2006-01&rft.volume=21&rft.issue=1&rft.spage=506&rft.epage=507&rft.pages=506-507&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2005.858805&rft_dat=%3Cproquest_RIE%3E896176417%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866384565&rft_id=info:pmid/&rft_ieee_id=1564240&rfr_iscdi=true