Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method

The traveling-wave tube (TWT) is an important amplifier for the THz wave (0.1-1 THz). A multistage depressed collector (MDC) is a significant component in TWT for collecting energy. When the MDC is working, its temperature will rise, causing thermal problems. The ordinary method for solving the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2024-07, Vol.52 (7), p.3072-3078
Hauptverfasser: Xia, Gongao, Liu, Wenxin, He, Yuan, Li, Hongjing, Zhou, Dongxing, Jiao, Ang, Lin, Ruibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3078
container_issue 7
container_start_page 3072
container_title IEEE transactions on plasma science
container_volume 52
creator Xia, Gongao
Liu, Wenxin
He, Yuan
Li, Hongjing
Zhou, Dongxing
Jiao, Ang
Lin, Ruibo
description The traveling-wave tube (TWT) is an important amplifier for the THz wave (0.1-1 THz). A multistage depressed collector (MDC) is a significant component in TWT for collecting energy. When the MDC is working, its temperature will rise, causing thermal problems. The ordinary method for solving the high-temperature problem is adding the radiators outside the TWT's MDC. In the previous design, most of the radiators were designed as straight panels, whose utility rate of space is poor and leads to bigger sizes. Moreover, there is always external vibration excitation from the outside environment, and the ability of the traditional straight radiator is not enough to resist the outside vibration excitation. This article designs a novel curving radiator to enhance the space utility rate and obtain lower temperature in the MDC and uses a new parameter space utilization ratio (SUR) to measure the heat dissipation ability of the radiators. A complete reliability analysis is carried out for this structure in ANSYS, including: 1) thermal analysis; 2) modal analysis; and 3) random vibration analysis.
doi_str_mv 10.1109/TPS.2024.3424779
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2024_3424779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10601561</ieee_id><sourcerecordid>10_1109_TPS_2024_3424779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-1c27b196b8211313623b42488ee805ddb304d919bfce79a8bf0e5555296ccef33</originalsourceid><addsrcrecordid>eNpNkMtOwkAUhidGExHdu3AxL1CcS2-zxCJoAtFACctmpj2FMaUlMwMJb-BjOw0sPJtzyf__yfkQeqZkRCkRr_n3asQIC0c8ZGGSiBs0oIKLQPAkukUDQgQPeEr5PXqw9ocQGkaEDdDvBKzetli2FV5Co6XSjXZnvNL7YyOd7lrc1VjiWfDWS3IjT17VboONH3B-VIAXx8Zp6-QW8AQOBqyFCmdd00DpOoM32u1wdjQn78JLWWnprxavbb9P38d4AW7XVY_orpaNhadrH6L19D3PPoL51-wzG8-DkoaJC2jJEkVFrFJGKac8Zlz5h9MUICVRVSlOwkpQoeoSEiFTVROIfDERlyXUnA8RueSWprPWQF0cjN5Lcy4oKXqShSdZ9CSLK0lveblYNAD8k8eERjHlf_vPcJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Gongao ; Liu, Wenxin ; He, Yuan ; Li, Hongjing ; Zhou, Dongxing ; Jiao, Ang ; Lin, Ruibo</creator><creatorcontrib>Xia, Gongao ; Liu, Wenxin ; He, Yuan ; Li, Hongjing ; Zhou, Dongxing ; Jiao, Ang ; Lin, Ruibo</creatorcontrib><description>The traveling-wave tube (TWT) is an important amplifier for the THz wave (0.1-1 THz). A multistage depressed collector (MDC) is a significant component in TWT for collecting energy. When the MDC is working, its temperature will rise, causing thermal problems. The ordinary method for solving the high-temperature problem is adding the radiators outside the TWT's MDC. In the previous design, most of the radiators were designed as straight panels, whose utility rate of space is poor and leads to bigger sizes. Moreover, there is always external vibration excitation from the outside environment, and the ability of the traditional straight radiator is not enough to resist the outside vibration excitation. This article designs a novel curving radiator to enhance the space utility rate and obtain lower temperature in the MDC and uses a new parameter space utilization ratio (SUR) to measure the heat dissipation ability of the radiators. A complete reliability analysis is carried out for this structure in ANSYS, including: 1) thermal analysis; 2) modal analysis; and 3) random vibration analysis.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2024.3424779</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ceramics ; Electrons ; Finite element analysis ; Heat dissipation ; Heating systems ; miniaturized traveling-wave tube (TWT) ; multistage depressed collector (MDC) ; Plasma temperature ; Reliability ; reliability analysis ; Thermal analysis ; TWT</subject><ispartof>IEEE transactions on plasma science, 2024-07, Vol.52 (7), p.3072-3078</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-1c27b196b8211313623b42488ee805ddb304d919bfce79a8bf0e5555296ccef33</cites><orcidid>0009-0001-2458-9388 ; 0000-0002-3869-6520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10601561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10601561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Gongao</creatorcontrib><creatorcontrib>Liu, Wenxin</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Li, Hongjing</creatorcontrib><creatorcontrib>Zhou, Dongxing</creatorcontrib><creatorcontrib>Jiao, Ang</creatorcontrib><creatorcontrib>Lin, Ruibo</creatorcontrib><title>Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The traveling-wave tube (TWT) is an important amplifier for the THz wave (0.1-1 THz). A multistage depressed collector (MDC) is a significant component in TWT for collecting energy. When the MDC is working, its temperature will rise, causing thermal problems. The ordinary method for solving the high-temperature problem is adding the radiators outside the TWT's MDC. In the previous design, most of the radiators were designed as straight panels, whose utility rate of space is poor and leads to bigger sizes. Moreover, there is always external vibration excitation from the outside environment, and the ability of the traditional straight radiator is not enough to resist the outside vibration excitation. This article designs a novel curving radiator to enhance the space utility rate and obtain lower temperature in the MDC and uses a new parameter space utilization ratio (SUR) to measure the heat dissipation ability of the radiators. A complete reliability analysis is carried out for this structure in ANSYS, including: 1) thermal analysis; 2) modal analysis; and 3) random vibration analysis.</description><subject>Ceramics</subject><subject>Electrons</subject><subject>Finite element analysis</subject><subject>Heat dissipation</subject><subject>Heating systems</subject><subject>miniaturized traveling-wave tube (TWT)</subject><subject>multistage depressed collector (MDC)</subject><subject>Plasma temperature</subject><subject>Reliability</subject><subject>reliability analysis</subject><subject>Thermal analysis</subject><subject>TWT</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwkAUhidGExHdu3AxL1CcS2-zxCJoAtFACctmpj2FMaUlMwMJb-BjOw0sPJtzyf__yfkQeqZkRCkRr_n3asQIC0c8ZGGSiBs0oIKLQPAkukUDQgQPeEr5PXqw9ocQGkaEDdDvBKzetli2FV5Co6XSjXZnvNL7YyOd7lrc1VjiWfDWS3IjT17VboONH3B-VIAXx8Zp6-QW8AQOBqyFCmdd00DpOoM32u1wdjQn78JLWWnprxavbb9P38d4AW7XVY_orpaNhadrH6L19D3PPoL51-wzG8-DkoaJC2jJEkVFrFJGKac8Zlz5h9MUICVRVSlOwkpQoeoSEiFTVROIfDERlyXUnA8RueSWprPWQF0cjN5Lcy4oKXqShSdZ9CSLK0lveblYNAD8k8eERjHlf_vPcJk</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Xia, Gongao</creator><creator>Liu, Wenxin</creator><creator>He, Yuan</creator><creator>Li, Hongjing</creator><creator>Zhou, Dongxing</creator><creator>Jiao, Ang</creator><creator>Lin, Ruibo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-2458-9388</orcidid><orcidid>https://orcid.org/0000-0002-3869-6520</orcidid></search><sort><creationdate>202407</creationdate><title>Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method</title><author>Xia, Gongao ; Liu, Wenxin ; He, Yuan ; Li, Hongjing ; Zhou, Dongxing ; Jiao, Ang ; Lin, Ruibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-1c27b196b8211313623b42488ee805ddb304d919bfce79a8bf0e5555296ccef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Electrons</topic><topic>Finite element analysis</topic><topic>Heat dissipation</topic><topic>Heating systems</topic><topic>miniaturized traveling-wave tube (TWT)</topic><topic>multistage depressed collector (MDC)</topic><topic>Plasma temperature</topic><topic>Reliability</topic><topic>reliability analysis</topic><topic>Thermal analysis</topic><topic>TWT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Gongao</creatorcontrib><creatorcontrib>Liu, Wenxin</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Li, Hongjing</creatorcontrib><creatorcontrib>Zhou, Dongxing</creatorcontrib><creatorcontrib>Jiao, Ang</creatorcontrib><creatorcontrib>Lin, Ruibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Gongao</au><au>Liu, Wenxin</au><au>He, Yuan</au><au>Li, Hongjing</au><au>Zhou, Dongxing</au><au>Jiao, Ang</au><au>Lin, Ruibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2024-07</date><risdate>2024</risdate><volume>52</volume><issue>7</issue><spage>3072</spage><epage>3078</epage><pages>3072-3078</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The traveling-wave tube (TWT) is an important amplifier for the THz wave (0.1-1 THz). A multistage depressed collector (MDC) is a significant component in TWT for collecting energy. When the MDC is working, its temperature will rise, causing thermal problems. The ordinary method for solving the high-temperature problem is adding the radiators outside the TWT's MDC. In the previous design, most of the radiators were designed as straight panels, whose utility rate of space is poor and leads to bigger sizes. Moreover, there is always external vibration excitation from the outside environment, and the ability of the traditional straight radiator is not enough to resist the outside vibration excitation. This article designs a novel curving radiator to enhance the space utility rate and obtain lower temperature in the MDC and uses a new parameter space utilization ratio (SUR) to measure the heat dissipation ability of the radiators. A complete reliability analysis is carried out for this structure in ANSYS, including: 1) thermal analysis; 2) modal analysis; and 3) random vibration analysis.</abstract><pub>IEEE</pub><doi>10.1109/TPS.2024.3424779</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0001-2458-9388</orcidid><orcidid>https://orcid.org/0000-0002-3869-6520</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2024-07, Vol.52 (7), p.3072-3078
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2024_3424779
source IEEE Electronic Library (IEL)
subjects Ceramics
Electrons
Finite element analysis
Heat dissipation
Heating systems
miniaturized traveling-wave tube (TWT)
multistage depressed collector (MDC)
Plasma temperature
Reliability
reliability analysis
Thermal analysis
TWT
title Design and Reliability Simulation of a G-Band Traveling-Wave Tube Multistage Depressed Collector With Curving Radiators Using FEA Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Reliability%20Simulation%20of%20a%20G-Band%20Traveling-Wave%20Tube%20Multistage%20Depressed%20Collector%20With%20Curving%20Radiators%20Using%20FEA%20Method&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Xia,%20Gongao&rft.date=2024-07&rft.volume=52&rft.issue=7&rft.spage=3072&rft.epage=3078&rft.pages=3072-3078&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2024.3424779&rft_dat=%3Ccrossref_RIE%3E10_1109_TPS_2024_3424779%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10601561&rfr_iscdi=true