A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization

The electromagnetic rail launch (EMRL) system has gained widespread adoption across both civilian and military sectors, attributable to its exceptional capability to generate substantial kinetic energy and its precision in control. The inductance gradient is one of the vital parameters that judge an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2024-06, Vol.52 (6), p.2304-2312
Hauptverfasser: Wang, Rufan, Liao, Minfu, Feng, Zeming, Duan, Xiongying, Xie, Dongze, Han, Xiaotao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2312
container_issue 6
container_start_page 2304
container_title IEEE transactions on plasma science
container_volume 52
creator Wang, Rufan
Liao, Minfu
Feng, Zeming
Duan, Xiongying
Xie, Dongze
Han, Xiaotao
description The electromagnetic rail launch (EMRL) system has gained widespread adoption across both civilian and military sectors, attributable to its exceptional capability to generate substantial kinetic energy and its precision in control. The inductance gradient is one of the vital parameters that judge and impact the EMRL launching performance. Existing studies overlook or inadequately account for the skinning effect at the high-frequency current. This study introduces a novel approach for calculating the inductance gradient using a four-corner splitting (FCS) method. The method considers the skinning and proximity effects, enhancing the accuracy and consistency of the calculated results. Comparative analyses were conducted among the FCS, Kerrisk, and Batteh methods at different frequencies and sizes to verify their precision and coherence. Furthermore, an improved Beluga Whale optimization (BWO) algorithm was proposed to optimize the parameters impacting the inductance gradient. The introduced adaptive coefficients improve the algorithm oscillation and convergence speed, which are more suitable for inductive gradient parameter optimization. The method and findings offer theoretical guidance for optimal design in EMRL systems.
doi_str_mv 10.1109/TPS.2024.3418216
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2024_3418216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10577468</ieee_id><sourcerecordid>10_1109_TPS_2024_3418216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-177a4e4024a4dd8b07d8729698518afdddb2dcdadbc2be9c4c93e470c3dd5a323</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYjuXbjoHxjs19B2SQgCCYpRXE86fW-kZpghnUKiv14QFq7u5p6b3EPIPWcDzpl9XL2-DwQTaiAVN4IPL0iPW2kzK3V-SXqMWZlJw-U1uem6L8a4ypnoERjRl3aPNZ03sPMp7JFOo4OATaJjV_td7VJoG_qMad0CrdpIJzX6FNuN-2wwBU_fXKjpwu0av8ZIXQN0njq63KawCT9_9C25qlzd4d05--TjabIaz7LFcjofjxaZF1ynjGvtFKrDCacATMk0GC3s0JqcG1cBQCnAg4PSixKtV95KVJp5CZA7KWSfsNOuj23XRayKbQwbF78LzoqjpeJgqThaKs6WDsjDCQmI-K-ea62GRv4CzgllhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Rufan ; Liao, Minfu ; Feng, Zeming ; Duan, Xiongying ; Xie, Dongze ; Han, Xiaotao</creator><creatorcontrib>Wang, Rufan ; Liao, Minfu ; Feng, Zeming ; Duan, Xiongying ; Xie, Dongze ; Han, Xiaotao</creatorcontrib><description>The electromagnetic rail launch (EMRL) system has gained widespread adoption across both civilian and military sectors, attributable to its exceptional capability to generate substantial kinetic energy and its precision in control. The inductance gradient is one of the vital parameters that judge and impact the EMRL launching performance. Existing studies overlook or inadequately account for the skinning effect at the high-frequency current. This study introduces a novel approach for calculating the inductance gradient using a four-corner splitting (FCS) method. The method considers the skinning and proximity effects, enhancing the accuracy and consistency of the calculated results. Comparative analyses were conducted among the FCS, Kerrisk, and Batteh methods at different frequencies and sizes to verify their precision and coherence. Furthermore, an improved Beluga Whale optimization (BWO) algorithm was proposed to optimize the parameters impacting the inductance gradient. The introduced adaptive coefficients improve the algorithm oscillation and convergence speed, which are more suitable for inductive gradient parameter optimization. The method and findings offer theoretical guidance for optimal design in EMRL systems.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2024.3418216</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current distribution ; Electromagnetic rail launcher (EMRL) ; Finite element analysis ; four-corner splitting (FCS) calculation method ; Geometric modeling ; improved (BWO) algorithm ; Inductance ; inductance gradient ; Magnetic flux density ; Optimization ; Rails</subject><ispartof>IEEE transactions on plasma science, 2024-06, Vol.52 (6), p.2304-2312</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-177a4e4024a4dd8b07d8729698518afdddb2dcdadbc2be9c4c93e470c3dd5a323</cites><orcidid>0000-0002-3586-5755 ; 0000-0002-7089-9598 ; 0000-0001-5007-9472 ; 0000-0002-7932-3173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10577468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10577468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Rufan</creatorcontrib><creatorcontrib>Liao, Minfu</creatorcontrib><creatorcontrib>Feng, Zeming</creatorcontrib><creatorcontrib>Duan, Xiongying</creatorcontrib><creatorcontrib>Xie, Dongze</creatorcontrib><creatorcontrib>Han, Xiaotao</creatorcontrib><title>A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The electromagnetic rail launch (EMRL) system has gained widespread adoption across both civilian and military sectors, attributable to its exceptional capability to generate substantial kinetic energy and its precision in control. The inductance gradient is one of the vital parameters that judge and impact the EMRL launching performance. Existing studies overlook or inadequately account for the skinning effect at the high-frequency current. This study introduces a novel approach for calculating the inductance gradient using a four-corner splitting (FCS) method. The method considers the skinning and proximity effects, enhancing the accuracy and consistency of the calculated results. Comparative analyses were conducted among the FCS, Kerrisk, and Batteh methods at different frequencies and sizes to verify their precision and coherence. Furthermore, an improved Beluga Whale optimization (BWO) algorithm was proposed to optimize the parameters impacting the inductance gradient. The introduced adaptive coefficients improve the algorithm oscillation and convergence speed, which are more suitable for inductive gradient parameter optimization. The method and findings offer theoretical guidance for optimal design in EMRL systems.</description><subject>Current distribution</subject><subject>Electromagnetic rail launcher (EMRL)</subject><subject>Finite element analysis</subject><subject>four-corner splitting (FCS) calculation method</subject><subject>Geometric modeling</subject><subject>improved (BWO) algorithm</subject><subject>Inductance</subject><subject>inductance gradient</subject><subject>Magnetic flux density</subject><subject>Optimization</subject><subject>Rails</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiYjuXbjoHxjs19B2SQgCCYpRXE86fW-kZpghnUKiv14QFq7u5p6b3EPIPWcDzpl9XL2-DwQTaiAVN4IPL0iPW2kzK3V-SXqMWZlJw-U1uem6L8a4ypnoERjRl3aPNZ03sPMp7JFOo4OATaJjV_td7VJoG_qMad0CrdpIJzX6FNuN-2wwBU_fXKjpwu0av8ZIXQN0njq63KawCT9_9C25qlzd4d05--TjabIaz7LFcjofjxaZF1ynjGvtFKrDCacATMk0GC3s0JqcG1cBQCnAg4PSixKtV95KVJp5CZA7KWSfsNOuj23XRayKbQwbF78LzoqjpeJgqThaKs6WDsjDCQmI-K-ea62GRv4CzgllhA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Rufan</creator><creator>Liao, Minfu</creator><creator>Feng, Zeming</creator><creator>Duan, Xiongying</creator><creator>Xie, Dongze</creator><creator>Han, Xiaotao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3586-5755</orcidid><orcidid>https://orcid.org/0000-0002-7089-9598</orcidid><orcidid>https://orcid.org/0000-0001-5007-9472</orcidid><orcidid>https://orcid.org/0000-0002-7932-3173</orcidid></search><sort><creationdate>20240601</creationdate><title>A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization</title><author>Wang, Rufan ; Liao, Minfu ; Feng, Zeming ; Duan, Xiongying ; Xie, Dongze ; Han, Xiaotao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-177a4e4024a4dd8b07d8729698518afdddb2dcdadbc2be9c4c93e470c3dd5a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Current distribution</topic><topic>Electromagnetic rail launcher (EMRL)</topic><topic>Finite element analysis</topic><topic>four-corner splitting (FCS) calculation method</topic><topic>Geometric modeling</topic><topic>improved (BWO) algorithm</topic><topic>Inductance</topic><topic>inductance gradient</topic><topic>Magnetic flux density</topic><topic>Optimization</topic><topic>Rails</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rufan</creatorcontrib><creatorcontrib>Liao, Minfu</creatorcontrib><creatorcontrib>Feng, Zeming</creatorcontrib><creatorcontrib>Duan, Xiongying</creatorcontrib><creatorcontrib>Xie, Dongze</creatorcontrib><creatorcontrib>Han, Xiaotao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Rufan</au><au>Liao, Minfu</au><au>Feng, Zeming</au><au>Duan, Xiongying</au><au>Xie, Dongze</au><au>Han, Xiaotao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>52</volume><issue>6</issue><spage>2304</spage><epage>2312</epage><pages>2304-2312</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The electromagnetic rail launch (EMRL) system has gained widespread adoption across both civilian and military sectors, attributable to its exceptional capability to generate substantial kinetic energy and its precision in control. The inductance gradient is one of the vital parameters that judge and impact the EMRL launching performance. Existing studies overlook or inadequately account for the skinning effect at the high-frequency current. This study introduces a novel approach for calculating the inductance gradient using a four-corner splitting (FCS) method. The method considers the skinning and proximity effects, enhancing the accuracy and consistency of the calculated results. Comparative analyses were conducted among the FCS, Kerrisk, and Batteh methods at different frequencies and sizes to verify their precision and coherence. Furthermore, an improved Beluga Whale optimization (BWO) algorithm was proposed to optimize the parameters impacting the inductance gradient. The introduced adaptive coefficients improve the algorithm oscillation and convergence speed, which are more suitable for inductive gradient parameter optimization. The method and findings offer theoretical guidance for optimal design in EMRL systems.</abstract><pub>IEEE</pub><doi>10.1109/TPS.2024.3418216</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3586-5755</orcidid><orcidid>https://orcid.org/0000-0002-7089-9598</orcidid><orcidid>https://orcid.org/0000-0001-5007-9472</orcidid><orcidid>https://orcid.org/0000-0002-7932-3173</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2024-06, Vol.52 (6), p.2304-2312
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2024_3418216
source IEEE Electronic Library (IEL)
subjects Current distribution
Electromagnetic rail launcher (EMRL)
Finite element analysis
four-corner splitting (FCS) calculation method
Geometric modeling
improved (BWO) algorithm
Inductance
inductance gradient
Magnetic flux density
Optimization
Rails
title A Novel Inductive Gradient Calculation Method for Electromagnetic Rail Launcher and Its Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Inductive%20Gradient%20Calculation%20Method%20for%20Electromagnetic%20Rail%20Launcher%20and%20Its%20Optimization&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Wang,%20Rufan&rft.date=2024-06-01&rft.volume=52&rft.issue=6&rft.spage=2304&rft.epage=2312&rft.pages=2304-2312&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2024.3418216&rft_dat=%3Ccrossref_RIE%3E10_1109_TPS_2024_3418216%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10577468&rfr_iscdi=true