Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation

Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, abov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2022-06, Vol.50 (6), p.1934-1941
Hauptverfasser: Pan, Shaoming, Wang, Xiaoping, Min, Daomin, Li, Dajian, Rao, Xiajin, Su, Yi, Zhao, Jian, Li, Shengtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1941
container_issue 6
container_start_page 1934
container_title IEEE transactions on plasma science
container_volume 50
creator Pan, Shaoming
Wang, Xiaoping
Min, Daomin
Li, Dajian
Rao, Xiajin
Su, Yi
Zhao, Jian
Li, Shengtao
description Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.
doi_str_mv 10.1109/TPS.2022.3174607
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2022_3174607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779118</ieee_id><sourcerecordid>2679398191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykm4_NUbetFgoKbQVPIZud2C1ttya7gv_eSIuXeRl43hl4ELqlZEQp0Q_Lt8WIEcZGOVVcEnWGBlTnOtO5EudoQIjOs7yg-SW6inFDCOWCsAH6mHgPrsOtx2M4tLHpoMbl2oZPwO0ev1vX9zs8LvGiD946wNOtjev2GwJe7es0J9tUDwl9ArvDsxBs3diuaffX6MLbbYSbUw7RajpZli_Z_PV5Vj7OM8eI7DJZcc44r0jhgRfMWcG9YM75mlcAQlgoFEt7JSpJ6hoUqIpp4byVkmlp8yG6P949hParh9iZTduHfXppmFRJQUE1TRQ5Ui60MQbw5hCanQ0_hhLzJ9AkgeZPoDkJTJW7Y6UBgH9cK6UpLfJfD1BsHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679398191</pqid></control><display><type>article</type><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</creator><creatorcontrib>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</creatorcontrib><description>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3174607</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deposited charge ; Dielectrics ; Electric fields ; Electron avalanche ; electron beam irradiation ; Electron beams ; Electron emission ; Electron irradiation ; Electron radiation ; Electron trajectories ; Force ; High vacuum ; Insulation ; Irradiation ; Kinetic theory ; Multiplication ; Particle tracking ; Radiation ; Spacecraft ; Surface charge ; Surface flashover ; Surface treatment ; Trajectory ; vacuum dc surface flashover ; vacuum-insulation interface</subject><ispartof>IEEE transactions on plasma science, 2022-06, Vol.50 (6), p.1934-1941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</citedby><cites>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</cites><orcidid>0000-0003-4144-1809 ; 0000-0002-1951-3645 ; 0000-0002-1014-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Shaoming</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Min, Daomin</creatorcontrib><creatorcontrib>Li, Dajian</creatorcontrib><creatorcontrib>Rao, Xiajin</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Li, Shengtao</creatorcontrib><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</description><subject>Deposited charge</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electron avalanche</subject><subject>electron beam irradiation</subject><subject>Electron beams</subject><subject>Electron emission</subject><subject>Electron irradiation</subject><subject>Electron radiation</subject><subject>Electron trajectories</subject><subject>Force</subject><subject>High vacuum</subject><subject>Insulation</subject><subject>Irradiation</subject><subject>Kinetic theory</subject><subject>Multiplication</subject><subject>Particle tracking</subject><subject>Radiation</subject><subject>Spacecraft</subject><subject>Surface charge</subject><subject>Surface flashover</subject><subject>Surface treatment</subject><subject>Trajectory</subject><subject>vacuum dc surface flashover</subject><subject>vacuum-insulation interface</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykm4_NUbetFgoKbQVPIZud2C1ttya7gv_eSIuXeRl43hl4ELqlZEQp0Q_Lt8WIEcZGOVVcEnWGBlTnOtO5EudoQIjOs7yg-SW6inFDCOWCsAH6mHgPrsOtx2M4tLHpoMbl2oZPwO0ev1vX9zs8LvGiD946wNOtjev2GwJe7es0J9tUDwl9ArvDsxBs3diuaffX6MLbbYSbUw7RajpZli_Z_PV5Vj7OM8eI7DJZcc44r0jhgRfMWcG9YM75mlcAQlgoFEt7JSpJ6hoUqIpp4byVkmlp8yG6P949hParh9iZTduHfXppmFRJQUE1TRQ5Ui60MQbw5hCanQ0_hhLzJ9AkgeZPoDkJTJW7Y6UBgH9cK6UpLfJfD1BsHQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Pan, Shaoming</creator><creator>Wang, Xiaoping</creator><creator>Min, Daomin</creator><creator>Li, Dajian</creator><creator>Rao, Xiajin</creator><creator>Su, Yi</creator><creator>Zhao, Jian</creator><creator>Li, Shengtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4144-1809</orcidid><orcidid>https://orcid.org/0000-0002-1951-3645</orcidid><orcidid>https://orcid.org/0000-0002-1014-8004</orcidid></search><sort><creationdate>20220601</creationdate><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><author>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deposited charge</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electron avalanche</topic><topic>electron beam irradiation</topic><topic>Electron beams</topic><topic>Electron emission</topic><topic>Electron irradiation</topic><topic>Electron radiation</topic><topic>Electron trajectories</topic><topic>Force</topic><topic>High vacuum</topic><topic>Insulation</topic><topic>Irradiation</topic><topic>Kinetic theory</topic><topic>Multiplication</topic><topic>Particle tracking</topic><topic>Radiation</topic><topic>Spacecraft</topic><topic>Surface charge</topic><topic>Surface flashover</topic><topic>Surface treatment</topic><topic>Trajectory</topic><topic>vacuum dc surface flashover</topic><topic>vacuum-insulation interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shaoming</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Min, Daomin</creatorcontrib><creatorcontrib>Li, Dajian</creatorcontrib><creatorcontrib>Rao, Xiajin</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Li, Shengtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Shaoming</au><au>Wang, Xiaoping</au><au>Min, Daomin</au><au>Li, Dajian</au><au>Rao, Xiajin</au><au>Su, Yi</au><au>Zhao, Jian</au><au>Li, Shengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>50</volume><issue>6</issue><spage>1934</spage><epage>1941</epage><pages>1934-1941</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3174607</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4144-1809</orcidid><orcidid>https://orcid.org/0000-0002-1951-3645</orcidid><orcidid>https://orcid.org/0000-0002-1014-8004</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2022-06, Vol.50 (6), p.1934-1941
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2022_3174607
source IEEE Electronic Library (IEL)
subjects Deposited charge
Dielectrics
Electric fields
Electron avalanche
electron beam irradiation
Electron beams
Electron emission
Electron irradiation
Electron radiation
Electron trajectories
Force
High vacuum
Insulation
Irradiation
Kinetic theory
Multiplication
Particle tracking
Radiation
Spacecraft
Surface charge
Surface flashover
Surface treatment
Trajectory
vacuum dc surface flashover
vacuum-insulation interface
title Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Deposited%20Charge%20on%20Vacuum%20DC%20Surface%20Flashover%20Under%20Electron%20Beam%20Irradiation&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Pan,%20Shaoming&rft.date=2022-06-01&rft.volume=50&rft.issue=6&rft.spage=1934&rft.epage=1941&rft.pages=1934-1941&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3174607&rft_dat=%3Cproquest_RIE%3E2679398191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679398191&rft_id=info:pmid/&rft_ieee_id=9779118&rfr_iscdi=true