Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation
Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, abov...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2022-06, Vol.50 (6), p.1934-1941 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1941 |
---|---|
container_issue | 6 |
container_start_page | 1934 |
container_title | IEEE transactions on plasma science |
container_volume | 50 |
creator | Pan, Shaoming Wang, Xiaoping Min, Daomin Li, Dajian Rao, Xiajin Su, Yi Zhao, Jian Li, Shengtao |
description | Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover. |
doi_str_mv | 10.1109/TPS.2022.3174607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2022_3174607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779118</ieee_id><sourcerecordid>2679398191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykm4_NUbetFgoKbQVPIZud2C1ttya7gv_eSIuXeRl43hl4ELqlZEQp0Q_Lt8WIEcZGOVVcEnWGBlTnOtO5EudoQIjOs7yg-SW6inFDCOWCsAH6mHgPrsOtx2M4tLHpoMbl2oZPwO0ev1vX9zs8LvGiD946wNOtjev2GwJe7es0J9tUDwl9ArvDsxBs3diuaffX6MLbbYSbUw7RajpZli_Z_PV5Vj7OM8eI7DJZcc44r0jhgRfMWcG9YM75mlcAQlgoFEt7JSpJ6hoUqIpp4byVkmlp8yG6P949hParh9iZTduHfXppmFRJQUE1TRQ5Ui60MQbw5hCanQ0_hhLzJ9AkgeZPoDkJTJW7Y6UBgH9cK6UpLfJfD1BsHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679398191</pqid></control><display><type>article</type><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</creator><creatorcontrib>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</creatorcontrib><description>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3174607</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deposited charge ; Dielectrics ; Electric fields ; Electron avalanche ; electron beam irradiation ; Electron beams ; Electron emission ; Electron irradiation ; Electron radiation ; Electron trajectories ; Force ; High vacuum ; Insulation ; Irradiation ; Kinetic theory ; Multiplication ; Particle tracking ; Radiation ; Spacecraft ; Surface charge ; Surface flashover ; Surface treatment ; Trajectory ; vacuum dc surface flashover ; vacuum-insulation interface</subject><ispartof>IEEE transactions on plasma science, 2022-06, Vol.50 (6), p.1934-1941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</citedby><cites>FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</cites><orcidid>0000-0003-4144-1809 ; 0000-0002-1951-3645 ; 0000-0002-1014-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Shaoming</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Min, Daomin</creatorcontrib><creatorcontrib>Li, Dajian</creatorcontrib><creatorcontrib>Rao, Xiajin</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Li, Shengtao</creatorcontrib><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</description><subject>Deposited charge</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electron avalanche</subject><subject>electron beam irradiation</subject><subject>Electron beams</subject><subject>Electron emission</subject><subject>Electron irradiation</subject><subject>Electron radiation</subject><subject>Electron trajectories</subject><subject>Force</subject><subject>High vacuum</subject><subject>Insulation</subject><subject>Irradiation</subject><subject>Kinetic theory</subject><subject>Multiplication</subject><subject>Particle tracking</subject><subject>Radiation</subject><subject>Spacecraft</subject><subject>Surface charge</subject><subject>Surface flashover</subject><subject>Surface treatment</subject><subject>Trajectory</subject><subject>vacuum dc surface flashover</subject><subject>vacuum-insulation interface</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykm4_NUbetFgoKbQVPIZud2C1ttya7gv_eSIuXeRl43hl4ELqlZEQp0Q_Lt8WIEcZGOVVcEnWGBlTnOtO5EudoQIjOs7yg-SW6inFDCOWCsAH6mHgPrsOtx2M4tLHpoMbl2oZPwO0ev1vX9zs8LvGiD946wNOtjev2GwJe7es0J9tUDwl9ArvDsxBs3diuaffX6MLbbYSbUw7RajpZli_Z_PV5Vj7OM8eI7DJZcc44r0jhgRfMWcG9YM75mlcAQlgoFEt7JSpJ6hoUqIpp4byVkmlp8yG6P949hParh9iZTduHfXppmFRJQUE1TRQ5Ui60MQbw5hCanQ0_hhLzJ9AkgeZPoDkJTJW7Y6UBgH9cK6UpLfJfD1BsHQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Pan, Shaoming</creator><creator>Wang, Xiaoping</creator><creator>Min, Daomin</creator><creator>Li, Dajian</creator><creator>Rao, Xiajin</creator><creator>Su, Yi</creator><creator>Zhao, Jian</creator><creator>Li, Shengtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4144-1809</orcidid><orcidid>https://orcid.org/0000-0002-1951-3645</orcidid><orcidid>https://orcid.org/0000-0002-1014-8004</orcidid></search><sort><creationdate>20220601</creationdate><title>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</title><author>Pan, Shaoming ; Wang, Xiaoping ; Min, Daomin ; Li, Dajian ; Rao, Xiajin ; Su, Yi ; Zhao, Jian ; Li, Shengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-6b44244b08fe482ca54f52ccfd4bee55ae8722ccb5b60dde7e7b295cfa66296a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deposited charge</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electron avalanche</topic><topic>electron beam irradiation</topic><topic>Electron beams</topic><topic>Electron emission</topic><topic>Electron irradiation</topic><topic>Electron radiation</topic><topic>Electron trajectories</topic><topic>Force</topic><topic>High vacuum</topic><topic>Insulation</topic><topic>Irradiation</topic><topic>Kinetic theory</topic><topic>Multiplication</topic><topic>Particle tracking</topic><topic>Radiation</topic><topic>Spacecraft</topic><topic>Surface charge</topic><topic>Surface flashover</topic><topic>Surface treatment</topic><topic>Trajectory</topic><topic>vacuum dc surface flashover</topic><topic>vacuum-insulation interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shaoming</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Min, Daomin</creatorcontrib><creatorcontrib>Li, Dajian</creatorcontrib><creatorcontrib>Rao, Xiajin</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Li, Shengtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Shaoming</au><au>Wang, Xiaoping</au><au>Min, Daomin</au><au>Li, Dajian</au><au>Rao, Xiajin</au><au>Su, Yi</au><au>Zhao, Jian</au><au>Li, Shengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>50</volume><issue>6</issue><spage>1934</spage><epage>1941</epage><pages>1934-1941</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Spacecraft operating environment is rather complex, including high vacuum and energetic electron radiation. Vacuum-insulation interface is usually the weakest link of the insulation system since surface flashover usually occurs at the interface. There are several theories for surface flashover, above which the secondary electron emission avalanche (SEEA) and the electron triggered polarization relaxation (ETPR) are the mainstream. Since researchers have usually assumed that there has been a preexisting positive charge on the insulation surface, when the insulation surface is negatively charged by electron beam irradiation, these theories cannot be directly applied. In this article, the particle tracking method is used to simulate the initial and secondary electron trajectories in the initial phase of surface flashover, and to explain the influence of negative surface charge on surface flashover. The results show that: on the one hand, the negative deposited charge weakens the electric field at the cathode triple junction (CTJ), inhibits the initial electron emission, and hinders the initiation of flashover; on the other hand, the negative deposited charge repels the secondary electrons away from the insulation surface and hinders the multiplication of the secondary electrons and the development of flashover.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3174607</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4144-1809</orcidid><orcidid>https://orcid.org/0000-0002-1951-3645</orcidid><orcidid>https://orcid.org/0000-0002-1014-8004</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2022-06, Vol.50 (6), p.1934-1941 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2022_3174607 |
source | IEEE Electronic Library (IEL) |
subjects | Deposited charge Dielectrics Electric fields Electron avalanche electron beam irradiation Electron beams Electron emission Electron irradiation Electron radiation Electron trajectories Force High vacuum Insulation Irradiation Kinetic theory Multiplication Particle tracking Radiation Spacecraft Surface charge Surface flashover Surface treatment Trajectory vacuum dc surface flashover vacuum-insulation interface |
title | Effect of Deposited Charge on Vacuum DC Surface Flashover Under Electron Beam Irradiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Deposited%20Charge%20on%20Vacuum%20DC%20Surface%20Flashover%20Under%20Electron%20Beam%20Irradiation&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Pan,%20Shaoming&rft.date=2022-06-01&rft.volume=50&rft.issue=6&rft.spage=1934&rft.epage=1941&rft.pages=1934-1941&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3174607&rft_dat=%3Cproquest_RIE%3E2679398191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679398191&rft_id=info:pmid/&rft_ieee_id=9779118&rfr_iscdi=true |