Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator
As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2021-02, Vol.49 (2), p.663-671 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 671 |
---|---|
container_issue | 2 |
container_start_page | 663 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Li, Wenliang Zhang, Pengjiao Zhou, Bowen Zhang, Hong Liu, Youchun Zhang, Liping An, Sun |
description | As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications. |
doi_str_mv | 10.1109/TPS.2020.3048982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2020_3048982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328833</ieee_id><sourcerecordid>2501326660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAq6n50bTJcUznhA3FDXYMafp1dG5NTdvB_Ovt2PD0Xp73-14ehO4ZjRij-nn5uYg45TQSNFZa8Qs0YFpookUqL9GAUi2IUExco5um2VDKYkn5AO1eYA9bX--garEvsMUs1imZT3-fMBORJN8rPPZVW1ad7xqCV3YPeG7XFbTBV7jwAS-6GoLzVd65HlvjL5uXHk8C_HRQuQMeOQdbCLb14RZdFXbbwN05h2g5eV2Op2T28fY-Hs2I45q1JE9oJmma5TqBhLuMg-aqkIVWVkrl0ji1lvHUgsocMCZYoWPhANKc20TnYogeT2fr4PsRTWs2vgtV_9FwSZngSZLQnqInygXfNAEKU4dyZ8PBMGqOTk3v1BydmrPTvvJwqpQA8I9rwZUSQvwBSVdxxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501326660</pqid></control><display><type>article</type><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</creator><creatorcontrib>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</creatorcontrib><description>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.3048982</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Circuits ; Computer simulation ; Continuous radiation ; Continuous-wave (CW) magnetron ; Electrons ; Frequency locking ; Industrial applications ; injection locking ; Magnetic resonance ; Magnetic separation ; Microwave circuits ; microwave power test ; Operating costs ; Particle in cell technique ; particle-in-cell (PIC) simulation ; Power generation ; Simulation ; Superconducting magnets ; Superconductivity ; Tuning</subject><ispartof>IEEE transactions on plasma science, 2021-02, Vol.49 (2), p.663-671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</citedby><cites>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</cites><orcidid>0000-0002-5365-226X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9328833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wenliang</creatorcontrib><creatorcontrib>Zhang, Pengjiao</creatorcontrib><creatorcontrib>Zhou, Bowen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Youchun</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>An, Sun</creatorcontrib><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</description><subject>Anodes</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Continuous radiation</subject><subject>Continuous-wave (CW) magnetron</subject><subject>Electrons</subject><subject>Frequency locking</subject><subject>Industrial applications</subject><subject>injection locking</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Microwave circuits</subject><subject>microwave power test</subject><subject>Operating costs</subject><subject>Particle in cell technique</subject><subject>particle-in-cell (PIC) simulation</subject><subject>Power generation</subject><subject>Simulation</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Tuning</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAq6n50bTJcUznhA3FDXYMafp1dG5NTdvB_Ovt2PD0Xp73-14ehO4ZjRij-nn5uYg45TQSNFZa8Qs0YFpookUqL9GAUi2IUExco5um2VDKYkn5AO1eYA9bX--garEvsMUs1imZT3-fMBORJN8rPPZVW1ad7xqCV3YPeG7XFbTBV7jwAS-6GoLzVd65HlvjL5uXHk8C_HRQuQMeOQdbCLb14RZdFXbbwN05h2g5eV2Op2T28fY-Hs2I45q1JE9oJmma5TqBhLuMg-aqkIVWVkrl0ji1lvHUgsocMCZYoWPhANKc20TnYogeT2fr4PsRTWs2vgtV_9FwSZngSZLQnqInygXfNAEKU4dyZ8PBMGqOTk3v1BydmrPTvvJwqpQA8I9rwZUSQvwBSVdxxA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Wenliang</creator><creator>Zhang, Pengjiao</creator><creator>Zhou, Bowen</creator><creator>Zhang, Hong</creator><creator>Liu, Youchun</creator><creator>Zhang, Liping</creator><creator>An, Sun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5365-226X</orcidid></search><sort><creationdate>20210201</creationdate><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><author>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Continuous radiation</topic><topic>Continuous-wave (CW) magnetron</topic><topic>Electrons</topic><topic>Frequency locking</topic><topic>Industrial applications</topic><topic>injection locking</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Microwave circuits</topic><topic>microwave power test</topic><topic>Operating costs</topic><topic>Particle in cell technique</topic><topic>particle-in-cell (PIC) simulation</topic><topic>Power generation</topic><topic>Simulation</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenliang</creatorcontrib><creatorcontrib>Zhang, Pengjiao</creatorcontrib><creatorcontrib>Zhou, Bowen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Youchun</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>An, Sun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wenliang</au><au>Zhang, Pengjiao</au><au>Zhou, Bowen</au><au>Zhang, Hong</au><au>Liu, Youchun</au><au>Zhang, Liping</au><au>An, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>49</volume><issue>2</issue><spage>663</spage><epage>671</epage><pages>663-671</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.3048982</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5365-226X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-02, Vol.49 (2), p.663-671 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2020_3048982 |
source | IEEE Electronic Library (IEL) |
subjects | Anodes Circuits Computer simulation Continuous radiation Continuous-wave (CW) magnetron Electrons Frequency locking Industrial applications injection locking Magnetic resonance Magnetic separation Microwave circuits microwave power test Operating costs Particle in cell technique particle-in-cell (PIC) simulation Power generation Simulation Superconducting magnets Superconductivity Tuning |
title | Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%201497-MHz,%2013.5-kW%20Continuous-%20Wave%20Magnetron%20for%20Superconducting%20Radio%20Frequency%20Accelerator&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Li,%20Wenliang&rft.date=2021-02-01&rft.volume=49&rft.issue=2&rft.spage=663&rft.epage=671&rft.pages=663-671&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.3048982&rft_dat=%3Cproquest_RIE%3E2501326660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501326660&rft_id=info:pmid/&rft_ieee_id=9328833&rfr_iscdi=true |