Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator

As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2021-02, Vol.49 (2), p.663-671
Hauptverfasser: Li, Wenliang, Zhang, Pengjiao, Zhou, Bowen, Zhang, Hong, Liu, Youchun, Zhang, Liping, An, Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 2
container_start_page 663
container_title IEEE transactions on plasma science
container_volume 49
creator Li, Wenliang
Zhang, Pengjiao
Zhou, Bowen
Zhang, Hong
Liu, Youchun
Zhang, Liping
An, Sun
description As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.
doi_str_mv 10.1109/TPS.2020.3048982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2020_3048982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328833</ieee_id><sourcerecordid>2501326660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAq6n50bTJcUznhA3FDXYMafp1dG5NTdvB_Ovt2PD0Xp73-14ehO4ZjRij-nn5uYg45TQSNFZa8Qs0YFpookUqL9GAUi2IUExco5um2VDKYkn5AO1eYA9bX--garEvsMUs1imZT3-fMBORJN8rPPZVW1ad7xqCV3YPeG7XFbTBV7jwAS-6GoLzVd65HlvjL5uXHk8C_HRQuQMeOQdbCLb14RZdFXbbwN05h2g5eV2Op2T28fY-Hs2I45q1JE9oJmma5TqBhLuMg-aqkIVWVkrl0ji1lvHUgsocMCZYoWPhANKc20TnYogeT2fr4PsRTWs2vgtV_9FwSZngSZLQnqInygXfNAEKU4dyZ8PBMGqOTk3v1BydmrPTvvJwqpQA8I9rwZUSQvwBSVdxxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501326660</pqid></control><display><type>article</type><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</creator><creatorcontrib>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</creatorcontrib><description>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.3048982</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Circuits ; Computer simulation ; Continuous radiation ; Continuous-wave (CW) magnetron ; Electrons ; Frequency locking ; Industrial applications ; injection locking ; Magnetic resonance ; Magnetic separation ; Microwave circuits ; microwave power test ; Operating costs ; Particle in cell technique ; particle-in-cell (PIC) simulation ; Power generation ; Simulation ; Superconducting magnets ; Superconductivity ; Tuning</subject><ispartof>IEEE transactions on plasma science, 2021-02, Vol.49 (2), p.663-671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</citedby><cites>FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</cites><orcidid>0000-0002-5365-226X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9328833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wenliang</creatorcontrib><creatorcontrib>Zhang, Pengjiao</creatorcontrib><creatorcontrib>Zhou, Bowen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Youchun</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>An, Sun</creatorcontrib><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</description><subject>Anodes</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Continuous radiation</subject><subject>Continuous-wave (CW) magnetron</subject><subject>Electrons</subject><subject>Frequency locking</subject><subject>Industrial applications</subject><subject>injection locking</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Microwave circuits</subject><subject>microwave power test</subject><subject>Operating costs</subject><subject>Particle in cell technique</subject><subject>particle-in-cell (PIC) simulation</subject><subject>Power generation</subject><subject>Simulation</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Tuning</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAq6n50bTJcUznhA3FDXYMafp1dG5NTdvB_Ovt2PD0Xp73-14ehO4ZjRij-nn5uYg45TQSNFZa8Qs0YFpookUqL9GAUi2IUExco5um2VDKYkn5AO1eYA9bX--garEvsMUs1imZT3-fMBORJN8rPPZVW1ad7xqCV3YPeG7XFbTBV7jwAS-6GoLzVd65HlvjL5uXHk8C_HRQuQMeOQdbCLb14RZdFXbbwN05h2g5eV2Op2T28fY-Hs2I45q1JE9oJmma5TqBhLuMg-aqkIVWVkrl0ji1lvHUgsocMCZYoWPhANKc20TnYogeT2fr4PsRTWs2vgtV_9FwSZngSZLQnqInygXfNAEKU4dyZ8PBMGqOTk3v1BydmrPTvvJwqpQA8I9rwZUSQvwBSVdxxA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Wenliang</creator><creator>Zhang, Pengjiao</creator><creator>Zhou, Bowen</creator><creator>Zhang, Hong</creator><creator>Liu, Youchun</creator><creator>Zhang, Liping</creator><creator>An, Sun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5365-226X</orcidid></search><sort><creationdate>20210201</creationdate><title>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</title><author>Li, Wenliang ; Zhang, Pengjiao ; Zhou, Bowen ; Zhang, Hong ; Liu, Youchun ; Zhang, Liping ; An, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d60b507bd96e62cb2e928f5f98a558c747aa127ae8bce1131f943cee7d2a69d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Continuous radiation</topic><topic>Continuous-wave (CW) magnetron</topic><topic>Electrons</topic><topic>Frequency locking</topic><topic>Industrial applications</topic><topic>injection locking</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Microwave circuits</topic><topic>microwave power test</topic><topic>Operating costs</topic><topic>Particle in cell technique</topic><topic>particle-in-cell (PIC) simulation</topic><topic>Power generation</topic><topic>Simulation</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenliang</creatorcontrib><creatorcontrib>Zhang, Pengjiao</creatorcontrib><creatorcontrib>Zhou, Bowen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Liu, Youchun</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>An, Sun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wenliang</au><au>Zhang, Pengjiao</au><au>Zhou, Bowen</au><au>Zhang, Hong</au><au>Liu, Youchun</au><au>Zhang, Liping</au><au>An, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>49</volume><issue>2</issue><spage>663</spage><epage>671</epage><pages>663-671</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>As a low operating cost microwave source, magnetron has been fully considered for superconducting radio frequency (SRF) accelerator. A 1497-MHz, 13.5-kW continuous-wave (CW) magnetron for SRF accelerator is designed and manufactured, and the test results meet the design requirements. Two simulation steps of designing magnetron with Computer Simulation technology (CST) Studio Suite are presented. First, the Microwave Studio helped to simulate the microwave coupled output structure and the resonant cavity. Then, the output performance of magnetron was simulated with particle-in-cell (PIC) solver. The cold test results show that the circuit efficiency is 93.14 %. A magnetron hot test platform was used to measure an output power of 14.23 kW and an electronic efficiency of 84.23 %. The injection locking experiment is completed at 4.5 kW. The frequency of the magnetron is adjustable, with a tunable bandwidth of 7 MHz through a mechanical tuning rod. The problems and solutions in the process of design and manufacture are summarized, which can provide a reference for the development of high-power magnetron with different frequency. The development of 1497-MHz magnetron broadens the selectable frequency of high-power magnetron, which is beneficial to its industrial applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.3048982</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5365-226X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2021-02, Vol.49 (2), p.663-671
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2020_3048982
source IEEE Electronic Library (IEL)
subjects Anodes
Circuits
Computer simulation
Continuous radiation
Continuous-wave (CW) magnetron
Electrons
Frequency locking
Industrial applications
injection locking
Magnetic resonance
Magnetic separation
Microwave circuits
microwave power test
Operating costs
Particle in cell technique
particle-in-cell (PIC) simulation
Power generation
Simulation
Superconducting magnets
Superconductivity
Tuning
title Development of a 1497-MHz, 13.5-kW Continuous- Wave Magnetron for Superconducting Radio Frequency Accelerator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%201497-MHz,%2013.5-kW%20Continuous-%20Wave%20Magnetron%20for%20Superconducting%20Radio%20Frequency%20Accelerator&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Li,%20Wenliang&rft.date=2021-02-01&rft.volume=49&rft.issue=2&rft.spage=663&rft.epage=671&rft.pages=663-671&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.3048982&rft_dat=%3Cproquest_RIE%3E2501326660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501326660&rft_id=info:pmid/&rft_ieee_id=9328833&rfr_iscdi=true