Machine Learning Characterization of Alfvénic and Sub-Alfvénic Chirping and Correlation With Fast-Ion Loss at NSTX

Abrupt large events in the Alfvénic and subAlfvénic frequency bands in tokamaks are typically correlated with increased fast-ion loss. Here, machine learning is used to speed up the laborious process of characterizing the behavior of magnetic perturbations from corresponding frequency spectrograms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2020-01, Vol.48 (1), p.71-81
Hauptverfasser: Woods, Benjamin J. Q., Duarte, Vinicius N., Fredrickson, Eric D., Gorelenkov, Nikolai N., Podesta, Mario, Vann, Roddy G. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!