Review on the History, Research, and Applications of Electrohydrodynamics
Corona discharge refers to the phenomenon when the electric field near a conductor is strong enough to ionize the dielectric surrounding it but not strong enough to cause an electrical breakdown or arcing between conductors or other components. This phenomenon is unwanted and dangerous in high-volta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2014-02, Vol.42 (2), p.358-375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 2 |
container_start_page | 358 |
container_title | IEEE transactions on plasma science |
container_volume | 42 |
creator | Fylladitakis, Emmanouil D. Theodoridis, Michael P. Moronis, Antonios X. |
description | Corona discharge refers to the phenomenon when the electric field near a conductor is strong enough to ionize the dielectric surrounding it but not strong enough to cause an electrical breakdown or arcing between conductors or other components. This phenomenon is unwanted and dangerous in high-voltage systems; however, a controlled corona discharge may be used to ionize a fluid and induce motion by directly converting the electrical energy into kinetic energy. Phenomena that involve the direct conversion of electrical energy into kinetic energy are known as electrohydrodynamic (EHD) and have a variety of possible applications today. This paper contains a literature review of the research regarding the EHD effects associated with corona discharges, from the first observation of the phenomenon to the most recent advancements on its mathematical modeling, as well as the advancements on specific applications, such as thrust, heat transfer improvement, boundary layer enhancement, drying, fluid pumping, and cooling. |
doi_str_mv | 10.1109/TPS.2013.2297173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2013_2297173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6714477</ieee_id><sourcerecordid>1520945423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4baa8eb5b40416cb24c061c45bce23205ec355d061201cdb2ccc6ca9ba5fd4243</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpc9emjqfibNsZRqCwWl1vOymUzoSpqNu6mSf29KxdPAO887MA8h95xNOWf50-7tfSoYl1Mh8oxn8oKMeC7zJJeZviQjxnKZyBmX1-Qmxk_GuNJMjMh6i98Of6hvaLdHunKx86Gf0C1GtAH2E2qbks7btnZgO-ebSH1FlzVCF_y-L4Mv-8YeHMRbclXZOuLd3xyTj-flbrFKNq8v68V8k4DSvEtUYe0MC10opngKhVDAUj7sCkAhBdMIUutyyIZvoCwEAKRg88LqqlRCyTF5PN9tg_86YuzMwUXAurYN-mM0XAuWK62EHFB2RiH4GANWpg3uYENvODMna2awZk7WzJ-1ofJwrjhE_MfTjCuVZfIXbDdo3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520945423</pqid></control><display><type>article</type><title>Review on the History, Research, and Applications of Electrohydrodynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Fylladitakis, Emmanouil D. ; Theodoridis, Michael P. ; Moronis, Antonios X.</creator><creatorcontrib>Fylladitakis, Emmanouil D. ; Theodoridis, Michael P. ; Moronis, Antonios X.</creatorcontrib><description>Corona discharge refers to the phenomenon when the electric field near a conductor is strong enough to ionize the dielectric surrounding it but not strong enough to cause an electrical breakdown or arcing between conductors or other components. This phenomenon is unwanted and dangerous in high-voltage systems; however, a controlled corona discharge may be used to ionize a fluid and induce motion by directly converting the electrical energy into kinetic energy. Phenomena that involve the direct conversion of electrical energy into kinetic energy are known as electrohydrodynamic (EHD) and have a variety of possible applications today. This paper contains a literature review of the research regarding the EHD effects associated with corona discharges, from the first observation of the phenomenon to the most recent advancements on its mathematical modeling, as well as the advancements on specific applications, such as thrust, heat transfer improvement, boundary layer enhancement, drying, fluid pumping, and cooling.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2013.2297173</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational fluid dynamics ; Computational modeling ; Conductors (devices) ; Corona ; Corona discharge ; Coronas ; Direct power generation ; Discharges (electric) ; EHD-enhanced drying ; Electrodes ; electrohydrodynamics (EHD) ; electronics cooling ; electrostatic fluid accelerator ; Finite element analysis ; finite-element method (FEM) ; Fluid flow ; Fluids ; Geometry ; Heat transfer ; Kinetic energy ; Mathematical models ; micropump</subject><ispartof>IEEE transactions on plasma science, 2014-02, Vol.42 (2), p.358-375</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4baa8eb5b40416cb24c061c45bce23205ec355d061201cdb2ccc6ca9ba5fd4243</citedby><cites>FETCH-LOGICAL-c451t-4baa8eb5b40416cb24c061c45bce23205ec355d061201cdb2ccc6ca9ba5fd4243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6714477$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Fylladitakis, Emmanouil D.</creatorcontrib><creatorcontrib>Theodoridis, Michael P.</creatorcontrib><creatorcontrib>Moronis, Antonios X.</creatorcontrib><title>Review on the History, Research, and Applications of Electrohydrodynamics</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Corona discharge refers to the phenomenon when the electric field near a conductor is strong enough to ionize the dielectric surrounding it but not strong enough to cause an electrical breakdown or arcing between conductors or other components. This phenomenon is unwanted and dangerous in high-voltage systems; however, a controlled corona discharge may be used to ionize a fluid and induce motion by directly converting the electrical energy into kinetic energy. Phenomena that involve the direct conversion of electrical energy into kinetic energy are known as electrohydrodynamic (EHD) and have a variety of possible applications today. This paper contains a literature review of the research regarding the EHD effects associated with corona discharges, from the first observation of the phenomenon to the most recent advancements on its mathematical modeling, as well as the advancements on specific applications, such as thrust, heat transfer improvement, boundary layer enhancement, drying, fluid pumping, and cooling.</description><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Conductors (devices)</subject><subject>Corona</subject><subject>Corona discharge</subject><subject>Coronas</subject><subject>Direct power generation</subject><subject>Discharges (electric)</subject><subject>EHD-enhanced drying</subject><subject>Electrodes</subject><subject>electrohydrodynamics (EHD)</subject><subject>electronics cooling</subject><subject>electrostatic fluid accelerator</subject><subject>Finite element analysis</subject><subject>finite-element method (FEM)</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geometry</subject><subject>Heat transfer</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>micropump</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpc9emjqfibNsZRqCwWl1vOymUzoSpqNu6mSf29KxdPAO887MA8h95xNOWf50-7tfSoYl1Mh8oxn8oKMeC7zJJeZviQjxnKZyBmX1-Qmxk_GuNJMjMh6i98Of6hvaLdHunKx86Gf0C1GtAH2E2qbks7btnZgO-ebSH1FlzVCF_y-L4Mv-8YeHMRbclXZOuLd3xyTj-flbrFKNq8v68V8k4DSvEtUYe0MC10opngKhVDAUj7sCkAhBdMIUutyyIZvoCwEAKRg88LqqlRCyTF5PN9tg_86YuzMwUXAurYN-mM0XAuWK62EHFB2RiH4GANWpg3uYENvODMna2awZk7WzJ-1ofJwrjhE_MfTjCuVZfIXbDdo3w</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Fylladitakis, Emmanouil D.</creator><creator>Theodoridis, Michael P.</creator><creator>Moronis, Antonios X.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Review on the History, Research, and Applications of Electrohydrodynamics</title><author>Fylladitakis, Emmanouil D. ; Theodoridis, Michael P. ; Moronis, Antonios X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4baa8eb5b40416cb24c061c45bce23205ec355d061201cdb2ccc6ca9ba5fd4243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Conductors (devices)</topic><topic>Corona</topic><topic>Corona discharge</topic><topic>Coronas</topic><topic>Direct power generation</topic><topic>Discharges (electric)</topic><topic>EHD-enhanced drying</topic><topic>Electrodes</topic><topic>electrohydrodynamics (EHD)</topic><topic>electronics cooling</topic><topic>electrostatic fluid accelerator</topic><topic>Finite element analysis</topic><topic>finite-element method (FEM)</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geometry</topic><topic>Heat transfer</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>micropump</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fylladitakis, Emmanouil D.</creatorcontrib><creatorcontrib>Theodoridis, Michael P.</creatorcontrib><creatorcontrib>Moronis, Antonios X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fylladitakis, Emmanouil D.</au><au>Theodoridis, Michael P.</au><au>Moronis, Antonios X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review on the History, Research, and Applications of Electrohydrodynamics</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2014-02</date><risdate>2014</risdate><volume>42</volume><issue>2</issue><spage>358</spage><epage>375</epage><pages>358-375</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Corona discharge refers to the phenomenon when the electric field near a conductor is strong enough to ionize the dielectric surrounding it but not strong enough to cause an electrical breakdown or arcing between conductors or other components. This phenomenon is unwanted and dangerous in high-voltage systems; however, a controlled corona discharge may be used to ionize a fluid and induce motion by directly converting the electrical energy into kinetic energy. Phenomena that involve the direct conversion of electrical energy into kinetic energy are known as electrohydrodynamic (EHD) and have a variety of possible applications today. This paper contains a literature review of the research regarding the EHD effects associated with corona discharges, from the first observation of the phenomenon to the most recent advancements on its mathematical modeling, as well as the advancements on specific applications, such as thrust, heat transfer improvement, boundary layer enhancement, drying, fluid pumping, and cooling.</abstract><pub>IEEE</pub><doi>10.1109/TPS.2013.2297173</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2014-02, Vol.42 (2), p.358-375 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2013_2297173 |
source | IEEE Electronic Library (IEL) |
subjects | Computational fluid dynamics Computational modeling Conductors (devices) Corona Corona discharge Coronas Direct power generation Discharges (electric) EHD-enhanced drying Electrodes electrohydrodynamics (EHD) electronics cooling electrostatic fluid accelerator Finite element analysis finite-element method (FEM) Fluid flow Fluids Geometry Heat transfer Kinetic energy Mathematical models micropump |
title | Review on the History, Research, and Applications of Electrohydrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20on%20the%20History,%20Research,%20and%20Applications%20of%20Electrohydrodynamics&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Fylladitakis,%20Emmanouil%20D.&rft.date=2014-02&rft.volume=42&rft.issue=2&rft.spage=358&rft.epage=375&rft.pages=358-375&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2013.2297173&rft_dat=%3Cproquest_cross%3E1520945423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520945423&rft_id=info:pmid/&rft_ieee_id=6714477&rfr_iscdi=true |