Numerical Simulation of Merging Plasma Jets Using High-Z Gases
Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2013-04, Vol.41 (4), p.1011-1017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 4 |
container_start_page | 1011 |
container_title | IEEE transactions on plasma science |
container_volume | 41 |
creator | Linchun Wu Phillips, M. Messer, S. Case, A. Witherspoon, F. D. |
description | Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively. |
doi_str_mv | 10.1109/TPS.2013.2250950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2013_2250950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6482263</ieee_id><sourcerecordid>2942850191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpuA68Q3X8nMRpCirVK10HbjZphMXmpK0tSZZOG_N6XF1YPLuffBIeSWQkIp6IfVYpkwoDxhTIKWcEZGVHMda57JczIC0DzmivJLchXCFoAKCWxEHj_6Bn3lbB0tq6avbVe1u6gto3f0m2q3iRa1DY2N3rAL0Tocklm1-Y6_oqkNGK7JRWnrgDenOybrl-fVZBbPP6evk6d57JimXZxL4EKmtCxEoUrplBUZKuaYtHkhM13IEhm4PEddQioEOmBaKIWyyBA58DG5P-7uffvTY-jMtu39bnhpKGcpU4MCNlBwpJxvQ_BYmr2vGut_DQVzsGQGS-ZgyZwsDZW7Y6VCxH88FYqxlPM_OMhhsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326281092</pqid></control><display><type>article</type><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><source>IEEE Electronic Library (IEL)</source><creator>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</creator><creatorcontrib>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</creatorcontrib><description>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2013.2250950</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Argon ; Computational modeling ; Helium ; High- Z gases ; Hydrogen ; Mathematical model ; Merging ; Numerical models ; numerical simulations ; plasma jet merging ; plasma liner ; Plasma physics ; Plasma temperature ; Simulation ; Temperature</subject><ispartof>IEEE transactions on plasma science, 2013-04, Vol.41 (4), p.1011-1017</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</citedby><cites>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6482263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6482263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Linchun Wu</creatorcontrib><creatorcontrib>Phillips, M.</creatorcontrib><creatorcontrib>Messer, S.</creatorcontrib><creatorcontrib>Case, A.</creatorcontrib><creatorcontrib>Witherspoon, F. D.</creatorcontrib><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</description><subject>Algorithms</subject><subject>Argon</subject><subject>Computational modeling</subject><subject>Helium</subject><subject>High- Z gases</subject><subject>Hydrogen</subject><subject>Mathematical model</subject><subject>Merging</subject><subject>Numerical models</subject><subject>numerical simulations</subject><subject>plasma jet merging</subject><subject>plasma liner</subject><subject>Plasma physics</subject><subject>Plasma temperature</subject><subject>Simulation</subject><subject>Temperature</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpuA68Q3X8nMRpCirVK10HbjZphMXmpK0tSZZOG_N6XF1YPLuffBIeSWQkIp6IfVYpkwoDxhTIKWcEZGVHMda57JczIC0DzmivJLchXCFoAKCWxEHj_6Bn3lbB0tq6avbVe1u6gto3f0m2q3iRa1DY2N3rAL0Tocklm1-Y6_oqkNGK7JRWnrgDenOybrl-fVZBbPP6evk6d57JimXZxL4EKmtCxEoUrplBUZKuaYtHkhM13IEhm4PEddQioEOmBaKIWyyBA58DG5P-7uffvTY-jMtu39bnhpKGcpU4MCNlBwpJxvQ_BYmr2vGut_DQVzsGQGS-ZgyZwsDZW7Y6VCxH88FYqxlPM_OMhhsw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Linchun Wu</creator><creator>Phillips, M.</creator><creator>Messer, S.</creator><creator>Case, A.</creator><creator>Witherspoon, F. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><author>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Argon</topic><topic>Computational modeling</topic><topic>Helium</topic><topic>High- Z gases</topic><topic>Hydrogen</topic><topic>Mathematical model</topic><topic>Merging</topic><topic>Numerical models</topic><topic>numerical simulations</topic><topic>plasma jet merging</topic><topic>plasma liner</topic><topic>Plasma physics</topic><topic>Plasma temperature</topic><topic>Simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linchun Wu</creatorcontrib><creatorcontrib>Phillips, M.</creatorcontrib><creatorcontrib>Messer, S.</creatorcontrib><creatorcontrib>Case, A.</creatorcontrib><creatorcontrib>Witherspoon, F. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linchun Wu</au><au>Phillips, M.</au><au>Messer, S.</au><au>Case, A.</au><au>Witherspoon, F. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>41</volume><issue>4</issue><spage>1011</spage><epage>1017</epage><pages>1011-1017</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2013.2250950</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2013-04, Vol.41 (4), p.1011-1017 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2013_2250950 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Argon Computational modeling Helium High- Z gases Hydrogen Mathematical model Merging Numerical models numerical simulations plasma jet merging plasma liner Plasma physics Plasma temperature Simulation Temperature |
title | Numerical Simulation of Merging Plasma Jets Using High-Z Gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Merging%20Plasma%20Jets%20Using%20High-Z%20Gases&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Linchun%20Wu&rft.date=2013-04-01&rft.volume=41&rft.issue=4&rft.spage=1011&rft.epage=1017&rft.pages=1011-1017&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2013.2250950&rft_dat=%3Cproquest_RIE%3E2942850191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326281092&rft_id=info:pmid/&rft_ieee_id=6482263&rfr_iscdi=true |