Numerical Simulation of Merging Plasma Jets Using High-Z Gases

Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2013-04, Vol.41 (4), p.1011-1017
Hauptverfasser: Linchun Wu, Phillips, M., Messer, S., Case, A., Witherspoon, F. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 4
container_start_page 1011
container_title IEEE transactions on plasma science
container_volume 41
creator Linchun Wu
Phillips, M.
Messer, S.
Case, A.
Witherspoon, F. D.
description Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.
doi_str_mv 10.1109/TPS.2013.2250950
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2013_2250950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6482263</ieee_id><sourcerecordid>2942850191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpuA68Q3X8nMRpCirVK10HbjZphMXmpK0tSZZOG_N6XF1YPLuffBIeSWQkIp6IfVYpkwoDxhTIKWcEZGVHMda57JczIC0DzmivJLchXCFoAKCWxEHj_6Bn3lbB0tq6avbVe1u6gto3f0m2q3iRa1DY2N3rAL0Tocklm1-Y6_oqkNGK7JRWnrgDenOybrl-fVZBbPP6evk6d57JimXZxL4EKmtCxEoUrplBUZKuaYtHkhM13IEhm4PEddQioEOmBaKIWyyBA58DG5P-7uffvTY-jMtu39bnhpKGcpU4MCNlBwpJxvQ_BYmr2vGut_DQVzsGQGS-ZgyZwsDZW7Y6VCxH88FYqxlPM_OMhhsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326281092</pqid></control><display><type>article</type><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><source>IEEE Electronic Library (IEL)</source><creator>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</creator><creatorcontrib>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</creatorcontrib><description>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2013.2250950</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Argon ; Computational modeling ; Helium ; High- Z gases ; Hydrogen ; Mathematical model ; Merging ; Numerical models ; numerical simulations ; plasma jet merging ; plasma liner ; Plasma physics ; Plasma temperature ; Simulation ; Temperature</subject><ispartof>IEEE transactions on plasma science, 2013-04, Vol.41 (4), p.1011-1017</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</citedby><cites>FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6482263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6482263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Linchun Wu</creatorcontrib><creatorcontrib>Phillips, M.</creatorcontrib><creatorcontrib>Messer, S.</creatorcontrib><creatorcontrib>Case, A.</creatorcontrib><creatorcontrib>Witherspoon, F. D.</creatorcontrib><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</description><subject>Algorithms</subject><subject>Argon</subject><subject>Computational modeling</subject><subject>Helium</subject><subject>High- Z gases</subject><subject>Hydrogen</subject><subject>Mathematical model</subject><subject>Merging</subject><subject>Numerical models</subject><subject>numerical simulations</subject><subject>plasma jet merging</subject><subject>plasma liner</subject><subject>Plasma physics</subject><subject>Plasma temperature</subject><subject>Simulation</subject><subject>Temperature</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpuA68Q3X8nMRpCirVK10HbjZphMXmpK0tSZZOG_N6XF1YPLuffBIeSWQkIp6IfVYpkwoDxhTIKWcEZGVHMda57JczIC0DzmivJLchXCFoAKCWxEHj_6Bn3lbB0tq6avbVe1u6gto3f0m2q3iRa1DY2N3rAL0Tocklm1-Y6_oqkNGK7JRWnrgDenOybrl-fVZBbPP6evk6d57JimXZxL4EKmtCxEoUrplBUZKuaYtHkhM13IEhm4PEddQioEOmBaKIWyyBA58DG5P-7uffvTY-jMtu39bnhpKGcpU4MCNlBwpJxvQ_BYmr2vGut_DQVzsGQGS-ZgyZwsDZW7Y6VCxH88FYqxlPM_OMhhsw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Linchun Wu</creator><creator>Phillips, M.</creator><creator>Messer, S.</creator><creator>Case, A.</creator><creator>Witherspoon, F. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</title><author>Linchun Wu ; Phillips, M. ; Messer, S. ; Case, A. ; Witherspoon, F. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b5034561fd4d8f5c8a47e82c25abd579d5fe20cbbe9f0644ec029488e5d7ee303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Argon</topic><topic>Computational modeling</topic><topic>Helium</topic><topic>High- Z gases</topic><topic>Hydrogen</topic><topic>Mathematical model</topic><topic>Merging</topic><topic>Numerical models</topic><topic>numerical simulations</topic><topic>plasma jet merging</topic><topic>plasma liner</topic><topic>Plasma physics</topic><topic>Plasma temperature</topic><topic>Simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linchun Wu</creatorcontrib><creatorcontrib>Phillips, M.</creatorcontrib><creatorcontrib>Messer, S.</creatorcontrib><creatorcontrib>Case, A.</creatorcontrib><creatorcontrib>Witherspoon, F. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linchun Wu</au><au>Phillips, M.</au><au>Messer, S.</au><au>Case, A.</au><au>Witherspoon, F. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Merging Plasma Jets Using High-Z Gases</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>41</volume><issue>4</issue><spage>1011</spage><epage>1017</epage><pages>1011-1017</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Some initial numerical studies of merging plasma jets for magneto-inertial fusion (MIF) and high-energy-density laboratory plasmas have been performed, focusing on the study of jet propagation and plasma liner formation. Being heavier for a fixed number density and with more radiation cooling, high- Z materials can keep low jet transverse Mach number, and they are preferred in our studies as plasma jet and liner materials, while four-jet mergings of hydrogen and helium are briefly studied for comparison. Because of the advantages of high- Z plasma jets for the MIF application in which we are particularly interested, we focus mainly on argon and xenon in this paper. The plasma jets propagate with an initial velocity of 50-100 km/s, and number density is in the range 10 16 to 10 17 cm -3 . The merging jets are several centimeters in diameter. The hybrid particle-in-cell code LSP is used to perform the simulations, using an advanced fluid algorithm with equation-of-state model and a radiation transport model. Simulation results for several configurations and different numbers of the merging jets are compared and discussed. The results show that, with same number density, jet velocity, and temperature, merging using more jets achieves higher density, such as an amplification ratio of 115 for 16 jets and 38.5 for 4 jets, and much higher than that of hydrogen and helium in four-jet merging. During these mergings, the electron pressure reaches up to 10, 22.5, and 33.5 bar, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2013.2250950</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2013-04, Vol.41 (4), p.1011-1017
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2013_2250950
source IEEE Electronic Library (IEL)
subjects Algorithms
Argon
Computational modeling
Helium
High- Z gases
Hydrogen
Mathematical model
Merging
Numerical models
numerical simulations
plasma jet merging
plasma liner
Plasma physics
Plasma temperature
Simulation
Temperature
title Numerical Simulation of Merging Plasma Jets Using High-Z Gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Merging%20Plasma%20Jets%20Using%20High-Z%20Gases&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Linchun%20Wu&rft.date=2013-04-01&rft.volume=41&rft.issue=4&rft.spage=1011&rft.epage=1017&rft.pages=1011-1017&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2013.2250950&rft_dat=%3Cproquest_RIE%3E2942850191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326281092&rft_id=info:pmid/&rft_ieee_id=6482263&rfr_iscdi=true