A New Inductively Driven Plasma Generator (IPG6)-Setup and Initial Experiments

As part of the partnership between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University and the Institute of Space Systems (IRS) at the University of Stuttgart, a new design for a modular inductively driven plasma generator (IPG) is being developed and te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2013-04, Vol.41 (4), p.804-810
Hauptverfasser: Dropmann, M., Herdrich, G., Laufer, R., Puckert, D., Fulge, H., Fasoulas, S., Schmoke, J., Cook, M., Hyde, T. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As part of the partnership between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University and the Institute of Space Systems (IRS) at the University of Stuttgart, a new design for a modular inductively driven plasma generator (IPG) is being developed and tested within CASPER and the IRS. The current IPG design is built on a well-established heritage of modular IPGs designed and operated at IRS. This latest IPG source enables the electrodeless generation of high-enthalpy plasmas and will provide CASPER researchers with the ability to operate with various gases at plasma powers of approximately 15 kW. It will also provide minimized field losses and operation over a wide scope of parameters not possible using existing designs requiring flow-controlled stabilization.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2012.2237524