Microplasma Trapping of Particles

The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are releas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2007-10, Vol.35 (5), p.1574-1579
Hauptverfasser: Jun Xue, Hopwood, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 5
container_start_page 1574
container_title IEEE transactions on plasma science
container_volume 35
creator Jun Xue
Hopwood, J.A.
description The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.
doi_str_mv 10.1109/TPS.2007.905210
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2007_905210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4343202</ieee_id><sourcerecordid>34513880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnD16qoJ62ncnH7s5Ril9QsWA9hzRNZMu2uybtwX9vyhYFD54Ck2femXkYO0cYIgKNZtO3IQcohgSKIxywHpKgjEShDlkPgEQmShTH7CTGJQBKBbzHLl8qG5q2NnFlBrNg2rZafwwaP5iasKls7eIpO_Kmju5s__bZ-8P9bPyUTV4fn8d3k8xKzjcZKlI55Eq4AtMcKqwDyh3OIedUKnRQmIX01kIqks8RhTFiUUg5l95LEH122-W2ofncurjRqypaV9dm7Zpt1GVJMsXKPJE3_5JCqrRCuYu8-gMum21Ypys0ksKiIEkJGnVQ8hBjcF63oVqZ8KUR9M6sTmb1zqzuzKaO632sidbUPpi1reJvG2GZbhaJu-i4yjn38y2FFBy4-AaBp32H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195177949</pqid></control><display><type>article</type><title>Microplasma Trapping of Particles</title><source>IEEE Electronic Library (IEL)</source><creator>Jun Xue ; Hopwood, J.A.</creator><creatorcontrib>Jun Xue ; Hopwood, J.A.</creatorcontrib><description>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2007.905210</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Argon ; Basic studies of specific kinds of plasmas ; Charging ; Crystals ; Drag ; Dusty or complex plasmas ; plasma crystals ; Dusty plasma ; Electrical engineering ; Electron traps ; Electronics ; Electrostatics ; Exact sciences and technology ; Melamine ; microparticle ; Microparticles ; microplasma ; Microplasmas ; Microstrip ; Nanoparticles ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasmas ; Potential well ; Transmission lines ; Trapping</subject><ispartof>IEEE transactions on plasma science, 2007-10, Vol.35 (5), p.1574-1579</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</citedby><cites>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4343202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4343202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19186293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun Xue</creatorcontrib><creatorcontrib>Hopwood, J.A.</creatorcontrib><title>Microplasma Trapping of Particles</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</description><subject>Argon</subject><subject>Basic studies of specific kinds of plasmas</subject><subject>Charging</subject><subject>Crystals</subject><subject>Drag</subject><subject>Dusty or complex plasmas ; plasma crystals</subject><subject>Dusty plasma</subject><subject>Electrical engineering</subject><subject>Electron traps</subject><subject>Electronics</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Melamine</subject><subject>microparticle</subject><subject>Microparticles</subject><subject>microplasma</subject><subject>Microplasmas</subject><subject>Microstrip</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Potential well</subject><subject>Transmission lines</subject><subject>Trapping</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnD16qoJ62ncnH7s5Ril9QsWA9hzRNZMu2uybtwX9vyhYFD54Ck2femXkYO0cYIgKNZtO3IQcohgSKIxywHpKgjEShDlkPgEQmShTH7CTGJQBKBbzHLl8qG5q2NnFlBrNg2rZafwwaP5iasKls7eIpO_Kmju5s__bZ-8P9bPyUTV4fn8d3k8xKzjcZKlI55Eq4AtMcKqwDyh3OIedUKnRQmIX01kIqks8RhTFiUUg5l95LEH122-W2ofncurjRqypaV9dm7Zpt1GVJMsXKPJE3_5JCqrRCuYu8-gMum21Ypys0ksKiIEkJGnVQ8hBjcF63oVqZ8KUR9M6sTmb1zqzuzKaO632sidbUPpi1reJvG2GZbhaJu-i4yjn38y2FFBy4-AaBp32H</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Jun Xue</creator><creator>Hopwood, J.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>Microplasma Trapping of Particles</title><author>Jun Xue ; Hopwood, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Argon</topic><topic>Basic studies of specific kinds of plasmas</topic><topic>Charging</topic><topic>Crystals</topic><topic>Drag</topic><topic>Dusty or complex plasmas ; plasma crystals</topic><topic>Dusty plasma</topic><topic>Electrical engineering</topic><topic>Electron traps</topic><topic>Electronics</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Melamine</topic><topic>microparticle</topic><topic>Microparticles</topic><topic>microplasma</topic><topic>Microplasmas</topic><topic>Microstrip</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Potential well</topic><topic>Transmission lines</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Xue</creatorcontrib><creatorcontrib>Hopwood, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Xue</au><au>Hopwood, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplasma Trapping of Particles</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2007-10-01</date><risdate>2007</risdate><volume>35</volume><issue>5</issue><spage>1574</spage><epage>1579</epage><pages>1574-1579</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2007.905210</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2007-10, Vol.35 (5), p.1574-1579
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2007_905210
source IEEE Electronic Library (IEL)
subjects Argon
Basic studies of specific kinds of plasmas
Charging
Crystals
Drag
Dusty or complex plasmas
plasma crystals
Dusty plasma
Electrical engineering
Electron traps
Electronics
Electrostatics
Exact sciences and technology
Melamine
microparticle
Microparticles
microplasma
Microplasmas
Microstrip
Nanoparticles
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasmas
Potential well
Transmission lines
Trapping
title Microplasma Trapping of Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplasma%20Trapping%20of%20Particles&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Jun%20Xue&rft.date=2007-10-01&rft.volume=35&rft.issue=5&rft.spage=1574&rft.epage=1579&rft.pages=1574-1579&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2007.905210&rft_dat=%3Cproquest_RIE%3E34513880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195177949&rft_id=info:pmid/&rft_ieee_id=4343202&rfr_iscdi=true