Microplasma Trapping of Particles
The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are releas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2007-10, Vol.35 (5), p.1574-1579 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 5 |
container_start_page | 1574 |
container_title | IEEE transactions on plasma science |
container_volume | 35 |
creator | Jun Xue Hopwood, J.A. |
description | The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods. |
doi_str_mv | 10.1109/TPS.2007.905210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2007_905210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4343202</ieee_id><sourcerecordid>34513880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnD16qoJ62ncnH7s5Ril9QsWA9hzRNZMu2uybtwX9vyhYFD54Ck2femXkYO0cYIgKNZtO3IQcohgSKIxywHpKgjEShDlkPgEQmShTH7CTGJQBKBbzHLl8qG5q2NnFlBrNg2rZafwwaP5iasKls7eIpO_Kmju5s__bZ-8P9bPyUTV4fn8d3k8xKzjcZKlI55Eq4AtMcKqwDyh3OIedUKnRQmIX01kIqks8RhTFiUUg5l95LEH122-W2ofncurjRqypaV9dm7Zpt1GVJMsXKPJE3_5JCqrRCuYu8-gMum21Ypys0ksKiIEkJGnVQ8hBjcF63oVqZ8KUR9M6sTmb1zqzuzKaO632sidbUPpi1reJvG2GZbhaJu-i4yjn38y2FFBy4-AaBp32H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195177949</pqid></control><display><type>article</type><title>Microplasma Trapping of Particles</title><source>IEEE Electronic Library (IEL)</source><creator>Jun Xue ; Hopwood, J.A.</creator><creatorcontrib>Jun Xue ; Hopwood, J.A.</creatorcontrib><description>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2007.905210</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Argon ; Basic studies of specific kinds of plasmas ; Charging ; Crystals ; Drag ; Dusty or complex plasmas ; plasma crystals ; Dusty plasma ; Electrical engineering ; Electron traps ; Electronics ; Electrostatics ; Exact sciences and technology ; Melamine ; microparticle ; Microparticles ; microplasma ; Microplasmas ; Microstrip ; Nanoparticles ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasmas ; Potential well ; Transmission lines ; Trapping</subject><ispartof>IEEE transactions on plasma science, 2007-10, Vol.35 (5), p.1574-1579</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</citedby><cites>FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4343202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4343202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19186293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun Xue</creatorcontrib><creatorcontrib>Hopwood, J.A.</creatorcontrib><title>Microplasma Trapping of Particles</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</description><subject>Argon</subject><subject>Basic studies of specific kinds of plasmas</subject><subject>Charging</subject><subject>Crystals</subject><subject>Drag</subject><subject>Dusty or complex plasmas ; plasma crystals</subject><subject>Dusty plasma</subject><subject>Electrical engineering</subject><subject>Electron traps</subject><subject>Electronics</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Melamine</subject><subject>microparticle</subject><subject>Microparticles</subject><subject>microplasma</subject><subject>Microplasmas</subject><subject>Microstrip</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Potential well</subject><subject>Transmission lines</subject><subject>Trapping</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnD16qoJ62ncnH7s5Ril9QsWA9hzRNZMu2uybtwX9vyhYFD54Ck2femXkYO0cYIgKNZtO3IQcohgSKIxywHpKgjEShDlkPgEQmShTH7CTGJQBKBbzHLl8qG5q2NnFlBrNg2rZafwwaP5iasKls7eIpO_Kmju5s__bZ-8P9bPyUTV4fn8d3k8xKzjcZKlI55Eq4AtMcKqwDyh3OIedUKnRQmIX01kIqks8RhTFiUUg5l95LEH122-W2ofncurjRqypaV9dm7Zpt1GVJMsXKPJE3_5JCqrRCuYu8-gMum21Ypys0ksKiIEkJGnVQ8hBjcF63oVqZ8KUR9M6sTmb1zqzuzKaO632sidbUPpi1reJvG2GZbhaJu-i4yjn38y2FFBy4-AaBp32H</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Jun Xue</creator><creator>Hopwood, J.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>Microplasma Trapping of Particles</title><author>Jun Xue ; Hopwood, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-159560653e7138197ce096e1b0629851e07ad4fcc06e19f6113aa3d744b4ff403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Argon</topic><topic>Basic studies of specific kinds of plasmas</topic><topic>Charging</topic><topic>Crystals</topic><topic>Drag</topic><topic>Dusty or complex plasmas ; plasma crystals</topic><topic>Dusty plasma</topic><topic>Electrical engineering</topic><topic>Electron traps</topic><topic>Electronics</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Melamine</topic><topic>microparticle</topic><topic>Microparticles</topic><topic>microplasma</topic><topic>Microplasmas</topic><topic>Microstrip</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Potential well</topic><topic>Transmission lines</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Xue</creatorcontrib><creatorcontrib>Hopwood, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Xue</au><au>Hopwood, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplasma Trapping of Particles</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2007-10-01</date><risdate>2007</risdate><volume>35</volume><issue>5</issue><spage>1574</spage><epage>1579</epage><pages>1574-1579</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The localized potential gradients created by a microplasma are capable of trapping and concentrating micro- and nanoparticles. In this paper, argon microplasma is generated within a 350-mum discharge gap formed within a microstrip transmission line. Melamine formaldehyde particles (1 mum) are released approximately 2 cm away from the microplasma. The microparticles are then negatively charged by stray electrons, electrostatically drawn toward the potential well of the microplasma, and trapped within the microplasma. The particles are observed to form Coulomb crystals. Time-of-flight experiments show that the particles are trapped in the microplasma by balancing the electrostatic force of the potential well against the molecular drag force. Pulsed plasma data show that the particles retain a net negative charge after the plasma has been extinguished, allowing detection and sorting by electrostatic methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2007.905210</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2007-10, Vol.35 (5), p.1574-1579 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2007_905210 |
source | IEEE Electronic Library (IEL) |
subjects | Argon Basic studies of specific kinds of plasmas Charging Crystals Drag Dusty or complex plasmas plasma crystals Dusty plasma Electrical engineering Electron traps Electronics Electrostatics Exact sciences and technology Melamine microparticle Microparticles microplasma Microplasmas Microstrip Nanoparticles Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasmas Potential well Transmission lines Trapping |
title | Microplasma Trapping of Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplasma%20Trapping%20of%20Particles&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Jun%20Xue&rft.date=2007-10-01&rft.volume=35&rft.issue=5&rft.spage=1574&rft.epage=1579&rft.pages=1574-1579&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2007.905210&rft_dat=%3Cproquest_RIE%3E34513880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195177949&rft_id=info:pmid/&rft_ieee_id=4343202&rfr_iscdi=true |