Hamiltonian map description of electron dynamics in gyrotrons
Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2006-06, Vol.34 (3), p.673-680 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 3 |
container_start_page | 673 |
container_title | IEEE transactions on plasma science |
container_volume | 34 |
creator | Dumbrajs, O. Kominis, Y. Avramides, K.A. Hizanidis, K. Vomvoridis, J.L. |
description | Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations |
doi_str_mv | 10.1109/TPS.2006.875763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2006_875763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643290</ieee_id><sourcerecordid>1152546421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-33faa0ee5d237a53a530db67e2127c77f2d33b2af83414beda3952719b13c7883</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH6cPXgpHvTU3STTNMnBgyzqCgsKrueQpqlkaZuadA_7701ZQfAgDMwwPO_APAhdETwnBMvF5u19TjEu54IzXsIRmhEJMpfA2TGaYSwhB0HgFJ3FuMWYFAzTGbpf6c61o--d7rNOD1ltowluGJ3vM99ktrVmDGmu930iTcxcn33ug5-W8QKdNLqN9vKnn6OPp8fNcpWvX59flg_r3AAjYw7QaI2tZTUFrhmkwnVVcksJ5YbzhtYAFdWNgIIUla01SEY5kRUBw4WAc3R3uDsE_7WzcVSdi8a2re6t30UlhAQBHNNE3v5LUoFJKWA6efMH3Ppd6NMXikhGOFBMErQ4QCb4GINt1BBcp8NeEawm6ypZV5N1dbCeEteHhLPW_tJlAVRi-AYC-3yc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195173201</pqid></control><display><type>article</type><title>Hamiltonian map description of electron dynamics in gyrotrons</title><source>IEEE Explore</source><creator>Dumbrajs, O. ; Kominis, Y. ; Avramides, K.A. ; Hizanidis, K. ; Vomvoridis, J.L.</creator><creatorcontrib>Dumbrajs, O. ; Kominis, Y. ; Avramides, K.A. ; Hizanidis, K. ; Vomvoridis, J.L.</creatorcontrib><description>Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2006.875763</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceptability ; Cyclotrons ; Dynamics ; Electromagnetic heating ; Electron tubes ; Electrons ; Equations ; Fusion reactor design ; Gyrotrons ; Hamiltonian mappings ; Iterative methods ; Mathematical models ; microwave sources ; Physics ; Radio frequency ; Resonators ; Runge-Kutta method ; symplectic integration ; Tokamaks ; Trajectory</subject><ispartof>IEEE transactions on plasma science, 2006-06, Vol.34 (3), p.673-680</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-33faa0ee5d237a53a530db67e2127c77f2d33b2af83414beda3952719b13c7883</citedby><cites>FETCH-LOGICAL-c351t-33faa0ee5d237a53a530db67e2127c77f2d33b2af83414beda3952719b13c7883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dumbrajs, O.</creatorcontrib><creatorcontrib>Kominis, Y.</creatorcontrib><creatorcontrib>Avramides, K.A.</creatorcontrib><creatorcontrib>Hizanidis, K.</creatorcontrib><creatorcontrib>Vomvoridis, J.L.</creatorcontrib><title>Hamiltonian map description of electron dynamics in gyrotrons</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations</description><subject>Acceptability</subject><subject>Cyclotrons</subject><subject>Dynamics</subject><subject>Electromagnetic heating</subject><subject>Electron tubes</subject><subject>Electrons</subject><subject>Equations</subject><subject>Fusion reactor design</subject><subject>Gyrotrons</subject><subject>Hamiltonian mappings</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>microwave sources</subject><subject>Physics</subject><subject>Radio frequency</subject><subject>Resonators</subject><subject>Runge-Kutta method</subject><subject>symplectic integration</subject><subject>Tokamaks</subject><subject>Trajectory</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhoMouH6cPXgpHvTU3STTNMnBgyzqCgsKrueQpqlkaZuadA_7701ZQfAgDMwwPO_APAhdETwnBMvF5u19TjEu54IzXsIRmhEJMpfA2TGaYSwhB0HgFJ3FuMWYFAzTGbpf6c61o--d7rNOD1ltowluGJ3vM99ktrVmDGmu930iTcxcn33ug5-W8QKdNLqN9vKnn6OPp8fNcpWvX59flg_r3AAjYw7QaI2tZTUFrhmkwnVVcksJ5YbzhtYAFdWNgIIUla01SEY5kRUBw4WAc3R3uDsE_7WzcVSdi8a2re6t30UlhAQBHNNE3v5LUoFJKWA6efMH3Ppd6NMXikhGOFBMErQ4QCb4GINt1BBcp8NeEawm6ypZV5N1dbCeEteHhLPW_tJlAVRi-AYC-3yc</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Dumbrajs, O.</creator><creator>Kominis, Y.</creator><creator>Avramides, K.A.</creator><creator>Hizanidis, K.</creator><creator>Vomvoridis, J.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060601</creationdate><title>Hamiltonian map description of electron dynamics in gyrotrons</title><author>Dumbrajs, O. ; Kominis, Y. ; Avramides, K.A. ; Hizanidis, K. ; Vomvoridis, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-33faa0ee5d237a53a530db67e2127c77f2d33b2af83414beda3952719b13c7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acceptability</topic><topic>Cyclotrons</topic><topic>Dynamics</topic><topic>Electromagnetic heating</topic><topic>Electron tubes</topic><topic>Electrons</topic><topic>Equations</topic><topic>Fusion reactor design</topic><topic>Gyrotrons</topic><topic>Hamiltonian mappings</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>microwave sources</topic><topic>Physics</topic><topic>Radio frequency</topic><topic>Resonators</topic><topic>Runge-Kutta method</topic><topic>symplectic integration</topic><topic>Tokamaks</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumbrajs, O.</creatorcontrib><creatorcontrib>Kominis, Y.</creatorcontrib><creatorcontrib>Avramides, K.A.</creatorcontrib><creatorcontrib>Hizanidis, K.</creatorcontrib><creatorcontrib>Vomvoridis, J.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dumbrajs, O.</au><au>Kominis, Y.</au><au>Avramides, K.A.</au><au>Hizanidis, K.</au><au>Vomvoridis, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian map description of electron dynamics in gyrotrons</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>34</volume><issue>3</issue><spage>673</spage><epage>680</epage><pages>673-680</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2006.875763</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2006-06, Vol.34 (3), p.673-680 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2006_875763 |
source | IEEE Explore |
subjects | Acceptability Cyclotrons Dynamics Electromagnetic heating Electron tubes Electrons Equations Fusion reactor design Gyrotrons Hamiltonian mappings Iterative methods Mathematical models microwave sources Physics Radio frequency Resonators Runge-Kutta method symplectic integration Tokamaks Trajectory |
title | Hamiltonian map description of electron dynamics in gyrotrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20map%20description%20of%20electron%20dynamics%20in%20gyrotrons&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Dumbrajs,%20O.&rft.date=2006-06-01&rft.volume=34&rft.issue=3&rft.spage=673&rft.epage=680&rft.pages=673-680&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2006.875763&rft_dat=%3Cproquest_RIE%3E1152546421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195173201&rft_id=info:pmid/&rft_ieee_id=1643290&rfr_iscdi=true |